AD-A168 775 THE ROLE OF PROGRAM STRUCTURE IN SOFTWARE MAINTENANCE 172
(U) GEORGE MASON UNIV FRIRFAX VA DEPT OF PSVCR LOGY
0 A BOEHM- DRVlS ET AL. 29 HAY 86 TR-86-GMU-P

UNCLASSIFIED NO8@14-85-K-8243 F/G 9/2 NL

<

bl en S S S A D A A LA Sl ik Al e)

DTy

=

s
o

e
lis i

I
H{8,}

Il

L L L NI - v e ""'"",' N e
PR, T Ty W0 W TP TN DY P DR T . B P A T

- s . .
PRI RV I T D ¥ S O Ol S R O N L L S AL SRSt

A A R~ ol T S S it
--------- A e v e e

Te)

P

P

® George Mason University
A

TR-86-GMU~-PO1

TEE ROLE OF PROGRAM STRUCTURE IN SOFTWARE MAINTENANCE

DEBORAH A, BOEHM~DAVIS
ROBERT W. BOLT
ALAN C, SCHULTZ
PHILIP STANLEY

PRI
! ,
R A
s A A & A b A

-
I'd

N

O PR TR T R N

s AN

. v ¥ “a [}
L o ' » %Sy

s e R .

>

Voo : i o
~-]” 1 LAY AT ¢ Yol
3 'v‘

42 PN
g

it
.

LI}
g
. .

ot
« 1
- ‘A_‘A’A‘J)

e ~4
This df‘_f"i\‘f Ty emanved T
for pl’l:.; c P R _.-:‘~.:‘
distisheco., -]
e ! D
.‘,'

DG ANN

ANG FILE CGPY

[

.

~
-
-

3
;

RO L L L VPR SN 0 ST

| paan gt b esh o b b ok b as -Gl S M A A KA M A AR S R S A AR

e

o

Unclassified
eC R Y CLASS=CATWON QF T~ AGE

w v gt Badn 4
T e ST ET T T TN

REPORT DOCUMENTATION PAGE

YR~
@ REPORT SECWRITY CLASSIFICATION
Unclassified

1o RESTRICTIVE MARKINGS

e e —
2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION DOWNGRADING SCHEDULE

T ORTRBUTION: AVAILABILITY OF REPORT

Approved for public release; distribution
unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
TR=-86-GMU-PO1

—
S MONITORING ORGANIZATION REPORT NUMBER(S)

TR-86-GMU-PO1

60 OFFICE SYMBOL

68 NAME QF PERFORMING ORGANIZATION
- (If applicable)

George Mason University

7a NAME OF MONITORING ORGANIZATION

Office of Naval Research

6¢. ADORESS (Gity, State. and ZIP Code)

Psychology Department
Fairfax, VA 22030

7o ADDRESS (City. State. and ZIP Code)
Arlington, VA 22217-5000

8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
QRGANIZATION (If applicabie)
Engineering Psychology Program Code 442 1142EP NOOC14-85-K=0243
8¢. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK JNIT
Arlington, VA 22217-5000 tLEMENT N0 |NO NO ACTESSION NO
61153N 42 |RR 04209 RR 0420901 NR 4424 191

"1 TiTLE (Inciuoe Security Classification)

The Role of Program Structure in Software Maintenance (Unclassified)

2 PERSONAL AUTHOR(S) Deborah A. Boehm=Davis, Robert W. Holt, Alan C. Schultz, Philip Stanley

*3a TYPE QF REPORT
Technical Report

13b TIME COVERED

FROM

14
85 Ja~15rc 86Feb 2 May 29, 1986 96
PSR m=uidb = v S

DATE OF REPORT (Year, Month, Day) {15 PAGE COUNT

‘6 SUPPLEMENTARY NOTATION

Technical monitor: Dr. John J. O'Hare

°7 COSATI CODES

FIELD GROUP SUB-GRQUP

18 SUBJECT TERMS (Continue on reverse if necessary and igentify by biock number)
Software engineering, software experiments, modern program=
ming practices; program design methodologies, software
human factors, functional decomposition, Jackson program

and a form of object-oriented design.

belongs.

19 ABSTRACT (Continue on reverse !f necessary and identify by block number)
This research explores the effect of program structure on software modifiability.
research, undergraduate computer science majors and professional programmers were asked to
make either easy or difficult modifications to programs.
using each of three different design methodologies:
Further, the programmers' mental models of the
structure of the programs they had studied was examined.
structure, problem type, and ease of modification all affect performance.
suggest that while the pattern of results is similar for professional and student
programmers, the exact nature of the effect depends on the group to which the programmer

In this

These programs had been generated
in-line code, functional decomposition,

The results suggest that problem
Further, theyv

20 DISTRIBUTION . AVAILABILITY OF ABSTRACT

21 ABSTRACT SECURITY CLASSIFICATION

D UNC.ASSIFIEDUNLMITED) SAME AS AT [omic usexs | Unclassified/unlimited
22 NAME OF REGPONSIBLE NOIVIDUAL 225 ELEPHONE (Incluge Ares Coge) [22¢ OFFiCE 5YMBOL
Deborah A. Boehm-Davis (703)323=-2207

DD FORM 1473, 3amaRr

- -® . - at a4t a

DI R e Y 2 -

RIS T S S s .. oo
~atadlatetae'alalalialaliilialal

83 APR eaitiOn May be ysed unt!' exnausteq
Ali other eCItiONS are OpsO'ete

LR S S S S L
N

SECURITY CLASSIFICATION OF “wiS 24GE

Unclassified

- T S
PR R
- “w v -

- PRI TR
A A R A v e
- U - -

B .t T . -t e * .' P R] - et LI - e -~ . -
Salalts " et ataftatatasana alimlal w ki A A Pl SR . .

. . . . e .
P ARV U T I B T T

[,

PPN |

. r
Py

:

AP BT ST B |

1

VIS

.y

m'ﬁw:“rvn‘ﬂ L R Ll g s vl ot e g i gtt B b e A a-Aeg' A 2 RRtil xww'v"d'\‘v'a'l'v'd'-"‘i'-'\‘-'-'\'.'-*7

TR-86-GMU-PO1

THE ROLE OF PROGRAM STRUCTURE IN SOFTWARE MAINTENANCE

DEBORAH A. BOEHM-DAVIS
ROBERT W. HOLT
ALAN C., SCHULTZ
PHILIP STANLEY

Psychology Department
George Mason University
4400 University Drive
Fairfax, Virginia 22030

Submitted to:

Office of Naval Research L '
Engineering Psychology Program b —
Arlington, Virginia —

Contract: N00014-85-K-0243
Work Unit: NR 4424191-01

May 1986 A ' ' .
-~

Sy

'/
Approved for public release; distribution unlimited. \\3 E /
Reproduction in whole or in part is permitted for any purpose of —
the United States Government.

Lo S Su L0 A S Ahb it e i
Pl RN

e

INTRODUCTION

We have entered an era in which it has become increasingly
important to develop human engineering principles which will
significantly improve the structure of programs and assist programmers
in ensuring system reliability and maintainability. To achieve this,
it is important to understand the effects of program structure on a
programmer's ability to comprehend, alter, and maintain complex
programs from both a theoretical and applied perspective.

m tical F i

In order to understand the effects of program structure on
programmer productivity, we must consider the way in which knowledge
about computer program is cognitively represented and used by the
programmer, and the way in which program structure affects the
construction and use of this cognitive representation.

Cognitive representation. The basic facets of a cognitive
representation or knowledge structure are the fundamental elements or
entities of which the structure is composed and the relationships among
those fundamental elements (Sowa, 1984). There are different views,
however, on what the fundamental elements and relationships are for
programmers'® knowledge of computer programs.

Weiser (1982) has hypothesized that programmers cognitively deal
with segments of programs that are comprised of either contiguous lines
of code or of functionally related lines of code. These functional
units deal with the same set of variables, forming a mini-program which
Weiser calls a program "slice". Recall of programmers for debugged
programs indicated that they had stored both chunks of contiguous lines
of code and program slices. Thus the fundamental elements may
represent either a functional unit such as a program slice or a
contiguous block of code.

e aabmh ah R e S r e CAS A B by MchalA AR CERIREE DA A e
o~
RN
e
.)
e
AN
- »
L

% |d

‘ole

Adelson (1981) studied the recall of both novice and expert
programmers for lines of three small computer programs. The clustered
recall of the novices suggested that they were clustering lines of code
from all three programs on the basis of syntactic categories such as
"all IF statements"., Experts, on the other hand, used the functional
units of the three programs themselves to cluster their recall of the
lines of code. Since these three programs contained only 16 lines of
code, the size of these programs corresponded to the size of the slices
discussed by Weiser.

¢

[
PAC A

s
-

.

.
A
.
- .
ﬁ
o
ol
I’-‘~A.-
.

The results for expert programmers in these two studies are
consistent in indicating some functionally-based organization of the
program material on the part of professional programmers. However,
Adelson's results for novice programmers suggest that syntactic
classification can also be used for organizing program material, and
Weiser's results suggest that simple contiguity can also be used for
ordganizing program material,

The structure organizing these basic elements of program
comprehension is generally supposed to be a basic hierarchical
structure of larger, more abstract elements subsuming lower-level, more
detailed elements (Shneiderman & Mayer, 1979, Basili and Mills, 1982).
Besides the inclusion relationship that generates a hierarchical
structure, other types of relationships are possible among program
chunks, such as causal relationships between a computational subroutine
and an I/0 subroutine that is invoked by it.

Effects of program structure. Several studies support the idea
that a program with a clear, appropriate structure facilitates

programmer performance. Norcio (1982) found that an indented form of
documentation which clarified the control structure in a program and
explained the functional nature of each program segment was superior to
other forms of documentation for filling in missing statements.

Similarly, Shepard, Kruesi, and Curtis (1981) found that visually
emphasizing the control flow in a program structure facilitated forward
or backward tracing of the execution characteristics of the program,
Boehm-Davis and Fregly (1985) found that a high-level "resource" type
of documentation which emphasized the nature and structure of the
communication between concurrent processes in a program facilitated
modifications for this kind of complex program.

The fact that different aspects of structure emphasized in these
studies facilitated programmer performance suggests that the structure
emphasized by the program must be appropriate to the type of task being
performed by the programmer. As Brooks (1983) stated in his discussion
of a similar point, "Thus, a programmer whose task is to modify the
output format will be more concerned with the output statements and
less concerned with the major control structure than one who is
attempting to find a bug that is causing the program to produce wrong
values" (pp. 552-553). Since the above research indicates that the
type of appropriate structure also varies with the inherent nature of
the program, basic research studying the effects of different types of
program structures across qualitatively distinct types of programs on
programmer performance is necessary.

The issue of program structure has been addressed in the field of
computer science in the form of program design methodologies, which
seek to provide overall strategies for structuring solutions to
conputer problems. In general, these methods seek to improve the final
program by dividing the problem into manageable parts, thus allowing
the designer to deal with smaller units which are easier to code,
verify, and modify. While some attempts have been made to compare
specific design methodologies with each other, these comparisons have
generally been non-experimental in nature and have not provided any

\al Sad tad st tod Sl Sal Bl eaf ack end igh Ak aek wit And tub etk enll And At st sadoAnk el A Aulh SR Aal el Sl S A R

general guidelines as to which methodologies (or which properties of
methodologies) result in the most maintainable code. Such guidelines
would be very useful for project managers. One approach for developing
guidelines is to identify a major factor underlying the differences
among methodologies and to evaluate the effect of this factor
experimentally.

One fundamental difference among methodologies is the criterion
used to decompose the problem into smaller units. The methodologies
basically vary in the extent and type of modularization of the code.
On one end of this dimension is in-line code, where all of the
procedures are contained in the main routine of the program. On the
other end of the dimension are techniques which rely partially on data
structures and partially on operations as the basis for structuring the
programs (such as object-oriented design or Parnas' information-hiding
technique). Falling in between these two are techniques which rely on
functions alone as the basis for structuring the problem, such as

functional decomposition, or top—down design.

More specifically, in object-oriented design the criterion used to
modularize the program is that one module should be created for each
object (design decision) in the program. Operations are then defined
for each object, and these operations are the only ones permitted on
that object. In this way, each module can be created independently
from the other modules in the program, i.e., does not rely on knowledge
of the representation of data in any other module.

In functional decomposition the criterion used to structure the
program is that each major processing step (or operation) forms one
function or subroutine in the program, High-level functions or
subroutines are then further decomposed into smaller ones, each of
which represents a smaller processing step.

bl "R

Acolied i

Program structure is important from an applied perspective due to
the potentially large benefits that could accrue to a software project
at a relatively low cost. This is true, at least in part, because
improved programs reduce labor costs, especially during later phases of
the software 1life cycle where such costs are greatest (Putnam, 1978).
Recent reports have asserted that almost 70% of costs associated with
software are sustained after the product is delivered (Boehm, 198l1).
These costs generally are spent in maintenance; that is, modifications
and error corrections to the original program. These figures suggest
that even small improvements in program maintainability could be
translated into substantial cost savings. While many methodologies,
tools, and other programming aids have been developed to produce more
maintainable software, little empirical work has been done to establish
either objective measures of maintainability or a particular tool's
success in producing a maintainable product.

Our recent series of studies investigating the impact of
documentation format on program comprehensibility, codability,
verifiability, and modifiability represents a systematic, objective
evaluation of the impact of a programming tool (Boehm-Davis, Sheppard,
and Bailey, 1982; Sheppard, Bailey, and Bailey, 1984; Sheppard, Kruesi,
and Curtis, 1981). There is, however, almost a total absence of
research examining the impact of tools and methodologies early in the
software process, such as in program design. Research done at TRW,
IBM, and Raytheon suggests that errors made early in the project and
carried on into testing and integration are the most costly type of
error to find and correct. Also, characteristics of the program
itself, such as its complexity, generally determine the subsequent ease
of understanding and modifying the program.

T AT €T 4 T oW - W™ -~

Study Design

In this study, programs were created using each of three design
approaches., The three program design forms were straight serial
structure (in-line code), structure emphasizing functional units of the
program (functional decomposition), and structure emphasizing larger
object-oriented modules of the program (object-oriented). These
program structures were used to write programs for each of three
problems. The problems involved a real-time response system, a
database system with files, and a program oconstrucuting large
linked-list data structures, Ease of maintenance for these programs
was examined by presenting programmers with modifications to be made to
the code and measuring the amount of time required to make those
modifications, The object-oriented modularization was predicted to be
most compatible with the users' intemal representations of the
software problems posed and thus produce the best overall performance.
A further expectation was that increasing structure would increase ease
of modifiability. Thus, the in-line code should produce the worst
performance since it does not have any structure. Both functional
decomposition and object-oriented design were predicted to lead to
superior performance.

These predictions are also consistent with the demands placed on
the programmers. The in-line code does not provide any structure to
the program; therefore, maintenance progranmers will need to build a
cognitive structure as they read through and try to comprehend the
program, The functional decomposition will outline modules for each
function and hence provide a starting structure to programmers;
however, the programmers will be required to redefine and integrate
these functions into the real-world specifications for the problem,
which will require some additional time for program comprehension. The
object-oriented code provides one module for each real-world object, or
design decision, in the system. The data and functions associated with
that object are already integrated in each module. This representation
scheme should allow for direct translation to the specifications, and
thus, should lead to maximm performance. However, a there is a
possibility that the integration of both data

T ® " =T W=

o

and functions within a module may lead to enough increased complexity
| to offset the benefits that should accrue from increased structure.
These hypotheses are tested in this research.

RN S T Y el T Ty

METHOD
Materials

Problems. Three experimental problems and one practice problem
were used in this experiment. The three experimental problems involved
a military address system, a host-at-sea buoy system, and a student
transactions list; all were written in PASCAL.

The military address system maintained a data base of names and
postal addresses. From this data base, subsets of names, addresses,
and ranks could be drawn according to specified criteria and printed
according to a specified format, The host-at-sea problem involved
providing navigation and weather data to air and ship traffic at sea.
In this problem, buoys are deployed to collect wind, temperature, and
location data and they broadcast summaries of this information to
passing vessels and aircraft when requested to do so. The student
transactions list problem involved storing and maintaining information
about students through a transaction file using the data structure of a
linked 1list. Copies of each version of the three problems can be seen

in Appendix A.

Modifications. Two modifications were constructed for each
problem: a simple and a complex modification. The simple modification
required changing the program in only one location in the code. The
complex modification required changing the code in several locations.

Supplemental Materials. Each problem was accompanied by five types
of supplemental materials: a program overview, a data dictionary, a
program listing, and 1listings of the current and expected output from
the program. The program overview contained the program requirements,
a general description of the program design, and

¢
.
'

W*
P]
.

l.'l‘l,

-

’
)

S STV TYIY TN

T o
R B I AR S
PP
R A KN
P) P B

S .

. 2t e B
B . . PR

L A A IRt B AT
et ‘ - A L A

- . . ‘. ety .

CiarinCint fing e ea a0 g0 00 Y ?"—Wn A s
LI St S S
Lt MR A
: (AN
v . NI .

o P AR S e T T T B
. ‘P.;ﬁ:n"_n DRI SR AL PP, VU S Gyl SO0 U TP SO DT Wl T Sl Sy WV TV T Sy G,

the modification to be performed for each program. Copies of the
program overviews can be found in Appendix B. The data dictionary
included the variable names, an English description of the variables,
and the data type for each variable. The program listing was a paper
printout of the Pascal code which was identical to the code presented
on the CRT' screen. The listings of the current and expected output
provided the programmers with the current output and the output
expected from a correct run of the program; this allowed them to
determine where they had gone wrong if their modification to the
program did not run correctly.

Desian

The experimental design used in this experiment was a 3x3x2x2
design based on Winer (1971, p. 723-736) . The within-subjects factors
were type or problem (military address, host-at-sea, student
transactions) and program structure (in-line, functional decomposition,
object-oriented). Type of modification (simple, complex) and type of
programmer (undergraduates, professionals) were between-subjects
variables. Each programmer was assigned, via a latin square, to modify
three of the nine possible combinations of problem and program design
methodology. Each programmer made either three simple modifications or
three complex modifications. For example, a programmer might make a
simple modification to the in-line version of the military address
problem, the object-oriented version of the host-at-sea buoy problem,
and the functional decomposition version of the student transactions
problem, The order in which the programmers were observed under each
treatment condition was randomized independently for each programmer.

Pacticipant

The participants in this experiment were 36 programmers. Eighteen
of the participants were professional programmers; these participants
had an average of 3.5 years of professional programming experience.
Eighteen of the programmers were upper—division undergraduate computer

LIPS R - ® e N
PGS N O I L . O S e g, S SR 2R,

i ey T B
i . -1

{ science majors. These participants had an average of 0.2 year of
L. professional programming experience. Programmers were solicited
through advertisements and they were paid for their participation in
the research, All of the programmers had previous experience with

Pascal.

Procedure

Experimental sessions were conducted on an IBM PC. Initially, the
® participants were given a half-hour training session in which they had
to solve a sample problem. The experimenter also described the
procedure for using the text editor to modify the programs during this
session. This initial part of the session demonstrated the compiling
and program—checking sequence. The participants were first asked to

@
enter the changes from the problem discussed during the training
session. This was done to familiarize them with the operation of the
experimental system and its editor.

L

Following the practice program, the three experimental programs
were presented. An interactive data collection system recorded the
participants' responses throughout the session. The system recorded
each call for an editor command (e.g. ADD, CHANGE, LIST, or DELETE).
¢ From these, the overall time to modify and debug the programs was

calculated by suming the times from the individual editing sessions;

the number of errors made was also calculated., The time required for

compiling, 1linking, and executing the programs was not included in
o these measures. The programmers were required to continue working on a
s program until it was completed successfully or until 1 1/2 hours had
passed. They were allowed to take breaks between programs.

sl B o P oS S L M

After successfully modifying the problems, the programmers

® ,
completed a questionnaire about their previous programming experience.

q The information requested included detailed information on their)

1 familiarity with programming languages, operating systems, and program X

'. design methodologies. The participants were also asked about their |

educational background and the extent of their professional programming
experience,

b I U, DT S R S TPy G0 WU U TN WA U W SO W ¥ PO DA Pl Wiy W Wk TP Y g, W .

s AaBa giecian Soe. pas dte gt s Ave St R S Al el ol Sei ik et i Tx-T
’g!

i

b Following the experiment, an attempt was made to assess the

e programmers' mental models of all three problems, An interactive
’:::::-:E procedure was used to elicit as much of the content of the code as the

:';:l::..-: programmer recalled. ‘This procedure was loosely based on Buschke's

" (1977) two dimensional grid procedure and it allowed the researcher to

A develop a picture of the basic units the programmer used to represent

:::Z:j_ the problem and the relationships among these recalled units., Both

:- number of recalled units and number of relationships were recorded for

o analysis. The recalled units were further categorized as representing

_ 2 primarily program slices or contiguous lines of code.

= —

LR Brofessional Programer Data

Modification Time. The participants required an average of 33

3-‘_‘:'_12 minutes to modify each program. This represents the amount of time

studying the program, deciding on the appropriate changes to make the

T modification, and using the text editor (i.e., the total time spent at

E{E::f the terminal less the time for compiling, linking, executing, and

_:Elj:j checking the program).

N An analysis of variance showed that, overall, it took programmers

e less time to make an simple modification (20 minutes) than it did to

e make a complex modification (47 minutes), E(1,17) = 128.16, p < .0l.

. The analysis also showed that type of problem significantly affected

S the amount of time required to make the modification, F(2,24) = 9.83, p

::QE--:: < .01, Overall, the military address problem required the least amount

o of time (21 minutes), the student transactions list required an

:',"{-‘3 intermediate amount of time (37 minutes), and the host-at-sea buoy |
..-‘, problem required the greatest amount of time (42 minutes). The main 1
:?_'i& effect of problem structure was only significant using a reduced alpha |
4\-5 level, F(2,24) = 2,60, p < .10, and it did not interact with any of the

I Tt other variables. Figure 1 shows the modification times broken down by

!‘-! problem structure and type of problem.

" -10-
o

.‘f

PRSP I P PP -'-J

s

«©

70
80
50
40
30
20
10
0

in minutes

IIOE 11 minu

1

& HAS
8 MADDS

B TRANS

A
n\’”'
o s g
e . ."a .::'{ u;"'
o) e
v . 3 o
iy ol
n S
o e
W oy
e np
v .
et :1
o " Apiiad
ol o ! o
ee! e -, :
o - R, N
o e agrnd
o >4 X
R :
B :
.
Ls .
T:Vy\ et .
- Sl o e
'.rf :‘) . W

In-Line Functional 0Object-
Decomposition Oriented

PROGRAM STRUCTURE

Figure 1: The interaction of program

structure and problem
type on time to solution
for professionals.

-11-

R T DT S W R NS R T

.« .
l'! ‘<j ! ‘L'A,

Mumber of EJditing Sessions. FPor programs that did not compile or
run successfully, the programmers were required to complete another
editing session. The number of sessions required to successfully
modify the programs was calculated and analyzed. The analysis of
variance confirmed that simple modifications required fewer sessions
(1.5) than complex modifications (2.8), F(1,17) = 9.67, p < .01. No
other significant results were obtained from this analysis.

Mumber of Editor Transactions. The number of commands executed
during the editing sessions was calculated and analyzed. The analysis

showed a significant main effect for type of problem (F(2,24) = 14.07,
p < .01), The military address problem required the least number of
transactions (14), the student transactions 1list required an
intermediate number of transactions (37), and the host-at-sea buoy
problem required the greatest number of transactions (43). In
addition, the simple modifications required fewer transactions (15)
than the complex modifications (47), F(1,17) = 36.73, p < .01.

Mental Models Data. The participants' mental models of the
programs were assessed by asking the programmers to recall as many
segnents of the program as they oould. They were then asked to
indicate what, if any, relationships existed among the pieces they had
recalled. The number of chunks recalled, and tbe number of relations
expressed were each submitted to an analysis of variance. Both the
number of chunks and the number of relations recalled were greater for
the complex (4.1 and 3.1, respectively) than for the simple (3.2 and
2.0, respectively) modifications (F(1,17) = 6.57, 12.19, p < .05,

respectively.

The professional programmers recalled predominantly contiguous
clusters of lines of code as opposed to program slices (£t (17) = 8.37,
p < .001). The mean number of program chunks that were classified as
contiguous clusters of lines of code was 9.5 while the mean number of
program chunks that were categorized as program slices was 0.8.

to

.....................

Questijopnnaire Data. The post-session questionnaire contained
several questions regarding the participants' programming background.
The participants in this group were familiar with an average of 6.6
programming languages, 5.3 operating systems, and 2.5 program design
methodologies. The questionnaire also asked them to rate (on a 7-point
scale with 1 = not at all and 7 = constantly) how much they relied on
each type of documentation provided. The data suggest that they relied
most heavily on the program code (6.6). They relied on the program
overviews (4.8), expected output (4.1) and current output (3.7) to an
intermediate extent. The data dictionaries were rarely used (2.3).

Student Programmer Data

Modification Time. The student programmers required an average of
40 minutes to modify each program. An analysis of variance showed a
main effect of type of modification, F(1,17) = 19.67, p < .01, The
simple modifications required less time (26 minutes) than the complex
modifications (54 minutes). The main effects of type of problem
(F(2,24) = 5.12, p < .05) and of problem structure (F(2,24) = 5.79, p <
.05) were significant. Overall, the military address problem required
the least amount of time (32 minutes) while the host-at-sea buoy
problem (44 minutes) and student transaction list problem (45 minutes)
each required more time, Overall, the functionally decomposed code
required the least amount of time (34 minutes), the in-line code
required an intermediate amount of time (38 minutes) and the
object-oriented code required the greatest amount of time (49
minutes). However, there were significant interactions between problem
structure and type of problem (F(2,24) = 3.44, p < .05) and between
type of problem and ease of modification (F(2,24) = 5.07, p < .05), 8o
the main effect should be interpreted with caution. The nature of
these interactions can be seen in Figures 2 and 3,

Mumber of Editing Sessions. For the student programmers, none of
the independent variables significantly affected the number of editing
sessions required to successfully modify the programs.

-13-

70
60
50
40

inutes

IINE 11 Minu

T

0

10| & &

Figure 2: The interaction of program

@ MADDS
B TRANS

. ot
L owd -

In-Line Functional Object-
Decomposition Oriented

PROGREAM STRUCTURE

structure and problem
type on time to solution {

for students.

-14=

: w (0| @ sSnPLE
5 [b
: = 60} mcoupLEx
jo = 50
g 40
o = 30
m 20
. Hw
2 In-Line Functional Objeet-
J_'.c Decomposition Oriented
: PROGRAM STRUCTURE
®

Figure 3: The interaction of program
}‘. Btructure and type of
modification on time to
solution.

........................

Mmber of Editor Transactions. An analysis of the number of editor
transactions executed by the programmers revealed a main effect of type
of modification, PF(1,17) = 11,58, p < .01, The simple modifications
required fewer transactions (18) than the complex modifications (35).
The main effect of type of problem was also significant, F(2,24) =
14.39, p < .01, The military address problem required the smallest
number of transactions (14), the host-at-sea buoy problem required an
intermediate number of transactions (30) and the studen transaction
list problem required the greatest number of transactions (36). In
addition, there was a significant interaction between problem structure
and ease of modification (F(2,24) = 3.82, p < .05). The nature of this
interaction can be seen in Figqure 4.

Mental Models Data. For the student programmers, the main effect
of program structure was significant for both the number of chunks and
relations recalled, F(2,24) = 4,23, 3.73, p < .05 for chunks and
relations, respectively.

The student programmers recalled predominantly contiguous clusters
of lines of code as opposed to program slices (t (17) = 5.42, p <
.001). The mean number of program chunks recalled that were classified
as contiguous clusters of lines of code was 9.6 while the mean number
of program chunks that were classified as program slices was 1.3,

Questionnaire Data. The participants in this group were familiar
with an average of 5.4 programming languages, 2.8 operating systems,
and 2.3 program design methodologies., Of the documentation provided,
the data suggest that they relied most heavily on the program code
(6.0). They relied on the program overviews (5.6), expected output
(4.9) and current output (4.2) to an intermediate extent., The data
dictionaries were rarely used (2.6).

-16-

LAl Sl il Bl Bed fed SagP SO0 RAL Aol oAl aite aanc " NP AEr Su Pdiiaint A A St i S el it S AR A S A A A G S RN e ST """"T

¥ SIMPLE
B COMPLEX

50
40
30
20
10

Number of
Transactions

In-Line Functional Object-
Decomposition Oriented

PROGRAM STRUCTURE

Figure 4 : The interaction of program

structure and type of
modification on number

of editor transactions
during problem solution.

-17-

.
' ARG

3

roeey
s

PR o g0 0 4
., v PR M S]

ypewTw
O

DISCUSSION

The data provided by this research allow us to make several
interesting observations about the role that structure plays in
determining modification performance. They also provide insights into
the similarities and differences between student and professional
programmers.

The completion time data suggest that modification performance is
influenced by an interaction between the structure of the problem and
the type of problem presented. While this interaction was only
statistically significant for the student programmer group, the pattern
of results is very similar for the two groups of programmers. The
major differences between the two groups lie in solution speed and in
the effect of the object-oriented structure on the difficulty of the
host-at-sea buoy problem, The professional programmers modified the
military address and student transaction list problems faster than the
student programmers, but modified the host-at-sea buoy problem in
approximately the same amount of time as the student programmers.
While the object-oriented version of the host-at-sea buoy problem
required significantly more time to modify than the other versions of
that problem for both groups, the effect was much more pronounced for
the student programmers, leading to a significant problem structure by
problem type interaction.

For both groups, substantial differences in completion time were
observed between the simple and complex modifications. This difference
between the types of modifications was also reflected in significant
differences in the number of editor transactions for both groups of
programmers and for the number of editor sessions, chunks, and
relations recalled for the professional programmers. This suggests
that our ‘"complex" modifications were indeed more difficult than our
"simple"” modifications. This is not surprising since the complex
modifications required changes in several locations of the code while
our simple modifications required changes in only one location in the
code,

T S N TN e T T T e L e T

]

N
L

. g ,..l.'

N

-

’. “.‘fl ‘

For the student programmers, ease of modification also interacted
with problem structure. This interaction revealed that for the simple
modifications, problem structure did not influence ease of
modification, For the complex modifications, the functionally
decomposed code was easiest to modify, the in-line code was slightly
more difficult to modify, and the object-oriented code was most
difficult to modify. This suggests that structure, per ge, is not as
important as the particular type of structure.

;0

For both groups of programmers, there was a significant difference
in the completion times and number of editor transactions required to
modify the three problems. In all cases, the military address problem
was the easiest, while the student transaction list and host-at-sea
buoy problems were roughly equal in difficulty, and more difficult than
the military address problem,

The nature of the cognitive elements elicited in our free recall
procedure overwhelmingly favored clusters of contiguous lines of code
as opposed to program slices, as defined by Weiser (1982). Perhaps the
relatively large scale of the computer programs used in this research
made slicing of the computer programs too difficult, so that our
programmers used the simpler strategy of clustering lines of code by
continguity to form their cognitive chunks.

Differences between the student and professional programmers were
found in the significance of the overall main effect of problem
structure, For the professional programmers, the main effect was only
significant for the time data, and only at a reduced alpha level. For
the student programmers, a significant main effect was found for the
time, chunk and relations data. The time data suggested that
functionally decomposed code required the least amount of time, the
in-line <o¢code required an intermediate amount of time, and the
object-oriented code required the greatest amount of time, The nurber
of chunks and relations recalled was lower for the in-line version of
the code than for the functional decomposition and object-oriented

~19-

»e". v KSR S R R
o, . R L I R)
I LA LA A AaAatarar at

program versions, which were equal on these measures. This suggests
again that for students, structure, in and of itself, is not
necessarily useful.

Overall, the data suggest that problem structure, problem type and
ease of modification all affect performance. Further, the data suggest
that while the pattern of results is similar for professional and
student programmers, the exact nature of the effect depends on the
group to which the programmer belongs. This is not surprising given
the profiles of the two groups. The professionals were familiar with
slightly more programming languages and operating systems while both
groups were familiar with approximately the same number of program
design methodologies. In addition, both groups of programmers reported
relying on the same pieces of documentation, suggesting some
similarities in their strategies for solving problems. The major
difference between the groups was professional programming experience,
with students averaging 0.2 year of experience (with a range of 0 - 1
year) while professionals averaged 3.5 years (with a range of 1.5 - 12
years) .

The data, taken as a whole, only weakly supported our initial
hypotheses., The data revealed that increasing program structure, as
represented by our materials, did not lead to increased ease of
modifiability. Overall, the functionally decomposed code was the
easiest to modify, the in-line code was slightly more difficult to
modify, and the object-oriented code was the most difficult to modify.
An examination of the reports from the participants after they had
completed the experiment suggested a trade-off between program
structure and ease of modifiability. Due to the fact that the
object-oriented code was the most modularized, this program structure
required more passing of information from module to module. It would
appear that the overhead required to keep track of the additional
information is greater than the overhead reduced by the increased
modularity.

D T ——w— Sl it A e - S A A S A d Ar 4 Ar Bl s
....................... PR P

In addition, the effect of program structure on modifiability was
much weaker for the professional programmers than for the student
programmers. The main effect of program structure was only significant

for the professionals at a reduced level of confidence. One possible
explanation for this result is that one skill acquired in programming

e professionally is the ability to adapt to many different forms of
program structure,

The effects of type of problem and ease of modification were as
® expected., As many investigators have found, the three problems
differed in their overall level of difficulty. In addition, the data
strongly supported the hypothesis that changes localized in one area of
the code would require less time than those modifications requiring
@ changes in many locations in the code.

Overall, then, the data suggest that problem structure, type of
problem, and ease of modification all affect modification performance
for student and professional programmers, but that the exact nature of
the effect depends upon the group to which the programmer belongs.

-

-21-

b“""“"-“ PR)

et et et R S R
PRI TS S LS, S, S PP -~ lm e S S, 5

e etecenliations

A N S A A A S N |

REFERENCES

;. Basili, V.R. and Mills, H.,D. (1982). Understanding and documenting

programs. IEEE Transactions on Software Engineering, SE-8(3),

270~283,

Boem, B. W. (1981). tware ineering Economics. Prentice-Hall, 1
Inc.: Englewood Cliffs, N. J.

Boehm-Davis, D. A., and Fregly, A. M. (1985) Documentation of
concurrent programs. Human Factors, 27, 423-432.

Boehm-Davis, D. A,, Sheppard, S. B.,and Bailey, J. W. (1982). An
empirical evaluation of language-tailored PDLs. In Proceedings of

t i o) e H Factors Soci (pp. ﬁ
984-988) . Santa Monica, CA: The Human Factors Society.

Brooks, Ruven, (1983) . Towards a theory of the comprehension of
computer programs. Int, J, Man-Machine Studiesg, 18, 543-554. {

Buschke, H, (1977) . Two—dimensional recall: Immediate
identification of clusters in episodic and semantic memory.

Journal of Verbal Learning and Verbal Behavior, 12, 201-206. {

Norcio, A.F. (1982) . Indentation, documentation and programmer
comprehension. In Proceedings of the 26th Apnnual Meeting of the
Human Factors Society. Santa Monica, CA: The Human Factors {
Society, Inc.

Putnam, L. H, (1978). Measurement data to support sizing, estimating,

and control of the software life cycle. In Proceedings of COMPQON
¥78. New York: IEEE.

Sheppard, S. B., Bailey, J. W., and Bailey, E. K. (1984). An empirical
evaluation of software documentation formats. In J. C. Thomas & M.

L. Schneider (Eds.), Human Factors in Computer Systems (pp. 135 -
164) . Norwood, NJ: Ablex Publishing Corp.

-22=

Toeda T e R R, ' e ‘

. e c e - L. A A B ST R S e N
R I UOPEIPE, (T ST Al ST TR SO, S, VI PR TR YR T VYIRS Uil S e T, % PR PO Y A Sand

- LGl Sl ods Sas it &t inen - it b Ani ek Bl et g iatie -l uta e Rl Ctinc A s AMELR S A R Auk® Al il il Sl ek S Jint et Jhae Skt Al 2

[~
® Sheppard, S. B., Kruesi, E,, & Curtis, B. (1981). The effects of
b . n ensi
' ifjcatio In Proceedinas of the Fifth Intemational
q Conference on Software Engineering. Copyright, the Institute of
® electrical and Electronics Engineerrs, Inc.
[
Shneiderman, B., and Mayer, R. (1979) Syntactic/semantic interactions
in programmer behavior: A model and experimental results.
o International Journal of Computer and Information Sciences, 7,
219-239.
Sowa, J.F. (1984). ce Structures: formation Pr
@ Mind and Machine. Addison-Wesley Publishing Company, Reading MA.
g Weiser, M. (1982) . Programmers use slices when debugging. 1
Communications of the AQM, 25, 446-452. :
. !
Winer, B. J. (1971). tisti inciples in e i igg.]
New York: McGraw-Hill.]
]
]
¢ i
]
: 4
: ‘~'
)
b
3
)
Po
L
h
[
b
b
3
®
-23_
1’.

LI S S o LT vt . e T - ‘ e . R et "
e " . E— D S N M o . . . NE . 3 R
UYWAY S W ST SV DY Sy, ‘L',..L".'ﬁ.z‘ WP U Ty Y. PP U PN,V STV U .0 IR AP dR i S 0 S O, P O . . PR— PP VLV R T, N, PR, V. W'

LA\ Al AR AN A SR AT Y Al S A N SR S AT A I S A A AR R R A A A 4 -‘T

APPENDIX A
PROGRAM CCDE

A _ X . PR e, .
Lt T S R AA«.'.'.LL‘LkL'L’M‘L‘J—.L-L'L.L‘L..gj

[S o W T W e T ey Ly W W W W T Y WV W TV T T W T At Biatate R CRSE

-
~
-

Host-At-Sea Buoy Problem
(Functional Decomposition)

FRlohaM r1as (ReCesver , Transmitter s {fdetbiug+) dlanesises i o
O
® 03
-
Cuiisl

Numper temp_sensors =

Number _to_avg = 53
A

@ Ty FE
vtorage_Stach =
RECURD
Top 1 O.. 100
Dats 1 ARRAY
END;

beodwoed OF INTEcERg

3
L

.2
g I _ 0O Type = TEXT:
L
Reguest type = (None, Sus. Sowoft ., Ba1r o, Shapos
<l
Trane _speed type = (Fast., Slow);
. H
\U »

Vb

Foo TEXT: L Do HMOYT alter thie line 3
Senionas @ INTELERG
franemitter :+ I O Type:
Receiver @ 1_0_Tvpes
o Temp gauye i, lfemp qauge . Wind_e uauge,
Wind_a_gauwge, Gnega detect s 1 & Tvpes
Transmitter speed : Trene speed_tvpe;

Lurrent request : Requestl_types

Tenpl, Tenpl, Gnega, Wind_ speed, Wiind _a1v ¢ [NTESE:-;
St zoe 1 BOOLEAN:

Stacthk : Storage_stack:

‘-
.~ <
- u
Lo .

o

-
.

)

FROCEDURE Start sensar si
BEG
ALEIGEN (Temp _aqeauge 1, tempinl.ir
RESET Teap_qgauaes 1)
ASEIGEN (Temp _gauge I, tempomZaan
FESET (Temp _gauge 3 N

L

iGN (Winmd ¢ _gauge. wirndsie.in g -
Eoawend s _gauge ; g
SN (Wind _d_qgaeuge., winad.in g ' -
I Wind_d_gauwae R
P2 IGN (Omega _dertec b, W Qers 470 03 -1
RESET Umeaa Detect; N
Secaonds 1= 1 ~
Bl y
; 2
, 1
FROCEDURE Ztart tranhscis ver; Q
Bl (4 K
RESET (Fecelver g 1
REWRITE Tran sy btwr g
END s q
Y
. R : . o - ; et "

PP IRAPE R PRARNPE P PP SRR PO PR PSP OV, L

R . aaeaa - ga- B " - " .
evR T F T VTN T af plutial el Dadis e A s e R el i i Ral S A Sl N . . - . N RN ETURTON AaRA ..*

. [
=z i
¥

FUNCTION incoming_reguest @ Reguest_tvpe:
EEGIN
READIN (Receilver, Incoming_recuest);
B

[
.2
)
{3
<
S FUNCTION Sense (VAR Device @ 1 O _ Yyper : INMTEGER;S
BEGLN
READLIN (Device, Sensely
END 3
\ } 1
g i
> PN
.2
- FROCEDURE Cloch _ancrement (Yiam Sece 3 INTEGERD) 3

- BEG L
- Sece 1= Secs + 1;

_— ElDs

[

L

[N

FROCEDURE EBroadcast socsgs
L BEGIN

- WRITELN «Transmitter, 535)3
gk END3

FROCeUhE whove vindo 3 INTEGERS

FROCEDURE Fush (Info ¢ INTESER) G
BEGIN
Wiir Steach DU
BEGLIN
Top = Top + L3
Data [Topl := Info;
END: € wath 3
END;
EBEEGIN
Fust vlnfo) s
END 3
3
<o
Ny
FROZEDURE Broadcazt anfo & Templ., C Templ, (_GCmega,
c_Wind_gpeaea, 0 Windg dir
3 I EGH =3
.
peolh
o Wi Tha cTranzmitter « O dempr, O lempl, C_Omeua.
I C wind spess, O _Wind_duro:
' =hites
SO FRLLE DuhE Brocdl ast detedn cDerbeas s UvRE 3 ReQuesi L &
) 4
vk Thvte 1 AN RLE R
.
FROCE/ALFLE Fow o vrde it 3 Tl e !
Pl . e - - N . Tt . - - “ ..) - N ‘.." \. .t ’ - '- ‘-' ..' - A.'A-' ~
R T T I N N T T T T Y IR T NS Y VAT TG

BEL LN
WITh Slech
BEGIN
HINE IV
Top
EiND g
ENDs

Ly

CTopls:

AR
MOt e

X
FUNCTIOGN Empty _stachk ¢ BULLEFRARMN:
BEL L
wlid Stack Du
IF Top = 0
THEN Emptyv_stack 3= TRUE
ELSE Empty_stack 1= FALSE:
ENLs
]
-
EEbliN
WHILE NGT Empty_stack DO
BEoInN
iFf Deratl tvpe = fAir 1HEN
Tramsmitber _speed 1= Fash
ELSE IF Detsll _tvpe = 2niip THLI
Transmibtter_spaeld 1= slows
Fop (intor:
WhITELN Vransmrtler y livtoo:
END 3
el
23
o
<
-
r fGLEDURG Frocess _reguesL (reguest : Reguesl L. peig
BEloolNd
Ot Requezt o4
bos ¢ Set_sos 1= TRuks
Fir 3 Broadoas: detall vheguest g
Shi1p 3 Broadcast _detall cheguests s
Sosatt @ Sel _sos = FALSE:
ehilg
Efalrg
s
-
| RN
Thar U sEneor £
S L TP AN eIl B
Tlale L TOpR 1= Uiy
Dl ShidE 8 i
e H T ;,i_'.:
P N [R N S VU ST ORRE § ConleoiNU s dlier TRIS Cliie
Luodr ancrement Seo oonmdss
T R TR I A= TR TS - PR DRTTITE R N R A SN TR
17 Lurrent reguest - Nohe TRk
o SN
LEczel o MU L0 = Trat oo
BEL i
b Set zmoe iridie
Broadcast sas:
[RUSS VTTWES SR i
Templ 13 g
B LT AN TR ST * HE T ! VIR

Adat S St Baf i Sadh Byt Sult it dnft Sef Rt A gu g DU A A et " NS N R A I AR T
bbaili
Templ = Templ + Sence (Temp Qauge 33
TempZ 1= Templd + Sense «Tamp _gauge Lo ;
EiNw g
Templ 1= Templ DIV Number to_avags:
Templ 1= Templ DIV NWumber _to_avags
Srove (Templog
Store (templr:
Omega 1= tenze (Omega_detect) s
Store (Uneaar s
IF (Seconde MOD 20 = O THEN
REGIH
Wind speed := Sence (Wind « geauge)s
Store (Wind speed:
Wind_dir = Sense (wind d_gadges s
store (Winad dir);
EiDs
IF (Seconds MOL 0 = O) THEN
EBroadcast _into (Templ, Tenpl, Unegs, wlnd spead,
Wind dirg
ENDs
EHD
el T
Frocecs requect (Current request)
ol
ENDy { DO NGV ALTER THISZ LIKE 2
<l
¢ +» Do Not alter this [i1ne ®o JaABESIGNWE ., RUNLOr D ihEWRi TEr g CLOEL 7 2 8
(AR

Amtatatulialas.tafalaiadeiadas

WP, FPE. 1L, PGSR APRUY, VU TR S0, 7 0 W, Py WP o, O 0 W

Host-At-Sea Buoy Problem
(In-Line)
FROSHAP Hes theoc&lver o Tranemiitter o} THowouge Flunesi1oe: 1 o0
.
<l
UL
Number _temnp sensors = 3
Nuambyer _to_avyg =
g
IhHE
Sturaye_Slechk =
RECORD
Top @ O Loy
Data ¢ ARRey Dloo 1ol OF THTEGER:
END
oy
I O Type = TEXT:
Fequest tvpe = (None, Scw, Socscft, Air. Ships;
.
Trans _speed_type = (Fast., Slowss
Cl
ViR
F o+ TExT: { Do NOLT alter thuos liare o
Seconas ¢ INTEGER:
framsmitter ¢ | _U_Tvpe:s
tecziver : [0O Tvpoe;s
Tenp_gauge _1, Ten Qaude U, Wind = _daudt .,
Wwind _d_gauge, Unege detect 0 I 0 Tvpes
Transmitter speed : Transe speeu typesd
«
Lurrent _reguest @ hequest _tvpes
Tanel, Templ, Omedga, Wind spoed, Windg c1r 3 Hheicobing

Het sope 3 BOLULEAN:
Stact @ Storage _stact;
Hense @ INTEOEN:

Intos : INTEGER;

Ve Geuge), temp.oar
Clenp Qe by
Cieml JdeuGe o tempa.siin

Pl clemp gawede Jg

~
20

Pl (Ind & Jaulee. o Wlhiisa 1m
FESET wWwing s _Gauges g

AL G TWwIng o Gauge, Wlidt. it 13
S dind g gaager g

P DA d et Qet el U . Ofieeimte 410 0

ry

Sl Viome 3 et
LG n T 4l

-
il

-~

-

<
FeE sl whe_euver s
G -

P ITE virermemy vt er o

Tl e f"."l.'.' R

.
et =ow -~ bewzbs

[TURNT S A T DA S

-
-
T
«
5
~
.-
i
—
T
—
[d
<
o
¢
-
-
i
-
.
.
-1
<

AR At e g Bt dad it i el ha® Jigh it !
Azratdy thecelver , wurrent _reguest) g
Ir Current request = None THEN
BEGTN
IF (Seconds MOD 10 = O, THER
BEGS N
1F Set_sos THEN
WRITELN (Tranesmitter, SUz)
Templ 3= O;
Tempd 1= O3
FOGR VAR Num = 1 T0 Number _to_avwg DU
BEGTI
READLN «Temp_gauge 1, Sencer
Tenpl 15 lempl + Senses
REHDLN «Temp_gauwge ., Sencs)g
Tampl 1= Templ + sanse;
EiND g
Tempi = lempl D1V Number to svogs
Tempo 1= Templ LIV Namoer bi asgs
WITH Stact DG
BEGIM
lop 1= JTop + 13
Data {Topi = lempl:
ENDY U wain 3
Wil Stace DO
BEGIN
Top == Top + 13
Datta (lop) 1= Temp.l:
eMly L owitt
RERuLiv (Unega _detect, OQmoda:;
Wwlird Stachk DU
BOSTN
top 2= Top + 1
Data [Topld 1= Omegas
gvby U with 3
[F (Sezonds MOD 2o = O THEN
bBEwiii
REmDUN wWind s geuude, wind speec) s
Wik stack Du
BeGiN
Top 1+ Top + 13
Uava (Topl 1= Wind_speed;
ENDs ¢ with
RE-LLIN fwing _d_gauwge, Wina _dirosg
Wilr Stachk DO
BES LN
Top 1= Top + iz
Data {Topi := Wind dirg
END: { witty 3
ik
IF (Ceccornde MUD &0 = w. THE..
WhitELl cTransul tiegr , 1 @mfba . TE M e Dl
Wing speed. Windg div, s
Eivls
[SSNIN
ci b
LHSE Lurrent regutest of
2 5s 8 20U 305 += VRUL:
s owlliel Ziacy DU
wWhriiiz Tel b Ty, = Ui
Bl
Trafnieany L ber Lpe w3 roan
Iy 3= Data o iopg
Too 8- T 13
W LTEL G Traismia bt o ity
eidDg
Ao 3w i oL e
. . e e .- - . e - Lol el oele e
e L e e o ettt st e oot e

i e s nlaa o Afiar® e At g et e et el it LRt e A Sl et~ Sl el o Rl S N Y ol Sl L‘}.‘.*.".“.".'.'_',",“‘,"_‘i'.‘i"_‘
- 3 il i taliat e A A ot i - . -

wWiille WU (lop = Wy bo

BEGLN
Transmitter _speed = Slow;
Into 1= Data (Toods
Top 1= Jop - 1;
WRITELN (Transmitter, I[n+o);

END;

Sosott : Set_sos := FALSE:

ENDy O DU NOT ARLITER THIS LINE 2

[
(]

Corew Do NUT aliter this line #%e JASZOIGHNGF, FUN. Ok DaREWRITE(F) gUL D, v F
END { has J.

-
a

LANAY

R e L N T I

N e e

\

(R

[V RS

+

DIFEE)

Host-At-Sea Buoy Problem
(Object=-Oriented)

VICEDURE

it

TyrE 1.0

Heas o

Ul vEL o

fype

+x URJELT onuges

CUNLT

IvFE

sl

BEwiie

DO

tiND g

FUNLTION

Vb [S

Tram=micter s

= TEaTs

PPREFERFIRRFSFPARARRARREXK TR e

©

uinbrer to _avg = Oy

Gauvae_t.pe =

Temp _1,

Al IC]

PemD _QEunE _ i,
Wind _ dJdir _gauge,

Siau
RESETY
y1GN
Bl ok

C

(ST
Vief _Gaude 2,
vienp gaade Zs
tWiIng speed uauoe,
CWLNd | speed gauwes s
tW1ng Ulr _gaude,
LWL M
O G et
(Umega_detect s

L SEHEOr S

Temp _Qaude i,

Jange 1i1g

dir _gaugss

gcetect

-~

Measur ement

Temp .

Tenp _uaude .
Umaega_detect :

LOatiue 3

tiaebua+ !l

rempin. . A) ;

tempemdain !

windua.1rn 1

Qe J) 3

wind

SREeU .,

L.

.
H

ciliress

Dir

Speed
G Ty

wWinosm. .17y g

Leaetiue tvpe) 3

PUibdc) biie Seenze Vel Device 3 IO
Bl (i
FEvibiv vliovsite . Sernae:;
Ll s

F ol Tdhe v tEm Wb ol Integes
et LSTEEE I SN S ETENN
it pod
ek 3 H
T cat ahe . oo
. P
N

2

ol .

Lvpe

10

LHne Uet

InvTEGR M

IiNteoLr

R |

[

IreiBEcing

S e
Lrialt 2

el

SN T S Briuob s

bizaii

BEGIN

LHSE Gauge OF
flemp 1 3
Temp & os
Speed
Dir
Umega
Bl

N M AN i Rl

Livus
vy tempe o=

ENDs:

Temp Div

Get_measurement
Get _measuremant
Get _measurement

I
i
a
n
©

Gt _measuwr 2ment 1= HBense
Lt _measw ement ' Zentwe

e g mpm Y
AR,

_'uc:‘t.__t.h‘ﬂ’n[:_ i :

Letnfe 1

Lesl _LEmRE o

e sia Coeigr 4

1(;."\

IR RS

a8

Ty
S5 Nl S o it aaath ol

= kg _tenp

fvig_temy i

A ek ini 3

Niwnbes _to_avis

viog

TerUyelwowe e v

Wind sheeu gauge s

WWLING _dir _gadegeE
Omega_Jetect) g

[. - - . < . ~ .
Comsini b G tE‘ﬂ‘L-_‘. HE ue:t_‘me;«-.«.,n S ey
Eraiog
e b a [T i WG =R 2 T
iy)
[T SN et Wit Zeerer 3 1T L. T Lo & T z H
Coodi e
S I ST Lot : - - R : M
S L O O B Vo I 2] RV S} (SN L TR Iy h PRER IS =l B
D bR
R R Jot woo b _was Ui o (L TSy S S PP I P Y .
[y —
T SR BT STy L Y T - PO I I S VRN
A - 1
[N S L L) R R H _—— e e o oot e m o - N
oea o
RA R w PRSP e D WP I AP emsrt PR PR AR AR A RE XA RN
. I w _ A N R AR Y TR R I S SRR I 2 SR N S 2 IR
- Lae J— SR R VAR WL SR
. - - 1 : -
PO AL z* . - LRI vl e e ' R atd b o
e e Ye e a0
Corvde
e ta V
< ooy H LT end & T e
- PR S aod s A aoa

.. b
- FROUCEDURE Fuser vdns o ¢ IMTe ook g
{] EEGIN

- WITH Stachk DO

g BEGIN

- Tog 2= Top + 1

-. Data (Topl = Infco;:
ENDy { witrn 2

z EnNLs

)
) (9
- r-
o L9
. .

e -
=. A
-

. FUNCIION Fop @ LWNiLoER;
- BEGIN

e Wlir Stack DO q
o BEiSIN

- Fop := Data Licpl:
L Tep := Top - 4

D3

m

b MENGHy __Init_memor v

. BESIN

- Stack . Top 1= O3

;" Elisg
< o3

é ‘. {
FROCEDURE MEMUWRT _stwre resting (Measurement @ HaEver

BEGIIN

Fuash Measur ement)

EHlDs

- s
P v q

ForlTlod HUMCRY - Te memor v_empt vy 1 BOOiRi

o BEG T

IF Bleacr s Top = w

THer Pleriuiy . _ls_memory _empty 35 Thilde
ELSE HEZMGEy __Is_moemory_empty 3= Faicsk,

FURNCT IO MEFDRS | Get haistorac_reading @ INIcLER:
BESL

: Moy | _Get_historic_reading 1= Fop;q
ENDs #

: I
[$
e <l
. ..
L. L
.. (PR P PP R I AP AR R R P PRI PP PPN RRRRI PR P PRARARARRRARD PRSP AR TR
< o
-, [

-,
[N
oy

. Lree . ULl T TranSmlilalr APARRRRPRPIALPPIRPIASIRARRS BN,

-v_'. ‘;.'

“ .

\- ARs

N THFE Trans speeu tyvpe = (Faut, Diwws:

\'

A%, -

" T R l
. Framsma booer 3 1_ ,.'__1"(;'&.:

.- Tr afeml SUsl B3ReEG 1 1 alis Buesd Lviies

.4

FROCLDURLD TRMNZMITTER . Sturt ty ancmi tiwr s

IS REREN! {
REviF-I17T€ «Tr aniam; tter iy

Clag

R T T I 2. i sre are sl add ate gl B A A I

F

.
.
.
FroCEQURE TRANGHLITTER _Ercaccast

st sUE:
BESIN
WRITELN (Tramsimitter , SuUS g

s

Ny

L

FROLED WS TheidzdtITTER_ _broadocast infos

BLally
whol TELIN (Transwitter , Gnlbes Get tenp 1,

ORULES __Sev _temp_ 2, onoEs Det Omedqa,
GGy bGet wind_speed, GAUGES__Get wind div)g

Erais
O
Frowciund TrehaMiTlTER . Broadcast detarly
brolii
WrisLE HNOT omidvichy __Te _menory_empty o DO
BE I
WARITELIY (Trancmitter, MEMGH, vel _hleloric reausniy)d;
tielis
E oL

PR E P I P AR R RN R C P AR R R R IR PIRP PP P RARRPE P RARERA ARSI RE AR

PP Ll RELELYvEr PRI EIRERANFEIPRARRPRAARRIS S N

T
Feauest b ype = Uvlne, y F1r .y Siviger
ST TR G SN
Current _reauest 3 Reouest _types
Fecelver ¢ (3 Tvpes
<

Fhooeldkbe RELELVER _Start _recelrvers

2
EEGIN
RESE T (Recelver) s
END:
-
i3
Feleciube RECEIVEIN . _Rederve _Nent reguesis
EECIN
FEADe v tRhece s vir , LU reinn reliaes L, o
Loais
,
N
Floso i T mecelVEr Whel 12 curr regues'. 3 Rewtril Uyl
i'E;L.‘A'J
RE el bve iy Wivs L 3 E L0y P eutest Y L rre s v i et

-y
[SRR T4

AL AL IR SR NEREIEBERE RS IR SR ERELEEE RN ENNEENRIEEINENE XENRNEER NI

.
. ot . . o A N P . toeT

s e e . S et RN . Ly
PN S PP R B G IR S P oW - RPN Y WA G R TP G NV LT ET O YV TR P S TR S PO e |

MEE TR X E S

RRPPPPIIRRARS P RIRRARSPERANSE R PRRRS & 0K

Secoenos ¢ INTEOER;

i

Froceour e Coldr.

-
o

KR

o

eDuUne CLOCH

rooen
I

Fufee s latd Cluiss

in

It memar,

Siart Clioors

_IHCI’ t:tllL"‘o‘\’_MClL'Lb H

Ceconds + 1

1N

_oenua_tide 3 IRNTECLT

S Zend tinme ¥ oedonood

S HERARERREPTRRERRARTRS SRR PPy

Starl sencare:

__Start _tramsmituarg

reCel ve'r §

e 1 I s Evales
For oteals UL
Lo Broidd MR

[P ST

_Increment
Reosi e ne ooreqa

AU U U U U U S S S B Su I R, R, S

l= Ccurr roeguewst
ot

ST ST AN TT LI S P

w1 el

VAANOML T TEN brossoasnt

2tere readioa toed

it

_Srorss readindg o

bl W]) LY T d ;v.IiA';’ -

.

sture readinu TOorLce o

B] e e B N LYy

R el ot

i
r
n

2end _time

- ' Sy Sr
. [N TE A I Tt

vy

»e

TN SR TS B R ETTNTAE

®

Co

»

4]

|y
o Se
CrEE JTwrr revoesi (F
} ER [£
13 TRealNEM T TEF Lrocaduas=t _deteasis
200rp 2 TRmiNS LT TER | B osadoast _Jdetati;
Sosutt @ Set 0w 1o FaLSo:
ND: {case:

END: *+ DOONUH ALTEr Teill Link =»e 0

«orr DO ORDT ALTER THLS LINE = JARBZIONGT TRUN. OF JsREWRITE(F) s CL
B

TRER AR RS R AR P T AP I ARFRE RS- I Dr RS CEFERDIERRE I RA DDA

m—vv-\. S N L W N T T Yy T T Y Y S Y N T VWY W e wWiw

w no it * il e b -add atd. aed aiib ttdh bt il Sl Tl L - " T T Ta Tm e
v e ave Aonan 4 - di-Bull B0 Aut Aeh Aed Baf ek el Caitht ki ai b A e AR A B i~ . A . e

Military Address Problem
{(Functional Decomposition)

Frourecih PHoUS cDola $1)ey Frantery Inpuno s 4DeBUGHE D b ne sy ce o b V20

-
.
.
ur
€ Libee
Bl = H
.
Tyki
strang 3 type = LOTRING 40
She Liveg L tvpe = 25T NG (Lo
SEe 1t 1L tepe = LETviNL (Loog
Sbr iy Cotype = LLoaTRiNg (wus;
by ade type = Fravate, Corporal, Sarveantl . Lieatenct,
Captatn, Mapor, Colwel . General,
Ui niowsyy, None, w1l
Sl typer = SUring 1 bype;
N
File structuwr e = RECURD
Title @ Strana qrytvL\t_’:.
Last mame @ Suevng 00 e
Givern name 1 String o types
Erranch @ String oo Lvpdes
Command = String_ou_ tepe
straetl 1 String Do bvioes
City = &trarng 2o tvpes
otate : Straing Ju tepes
Coute v 3 Stvang 19 L vpes
Z10 3 String iw by
Grade @ L ade tvpes
ENG s
<
IVVD}’\
Fooe iExTs { DO NUT ALER THID L INE
Low_ s, Hiagbh_oip, Zip_state: @ J1p_fypus
Luw_graGce, High Qr adi, Grade_sbtate 1 Lrade Uy s
Ly record : Faile structur ed
cUb1le @ BOOLEFANG
bate ti1ie : TEaT;:
Franiter 3 TEXT;
[hde: ¢ TINTEGERS
Fvt _count, Corp count, odi o,
LU count ol count, Mayor couwnu,
ol cenr by ere ool FI O B] SR
P S ST Y B S S RV I SR B o RN
_ IR P L U T A LA .
N E UC- R SR A ST
i PEL] CEE T RS
» . S FUT] RS B S K TR SV S
.‘-'
e .
.":‘ frtl'
::: ir SO N T T R R S R
e m e v e . . R . L A - 2 . ‘_'<\ e - .

. . . PR . s - N . . - A WA Nt <. B
R T S D S AR A T SRS R T OU LI A S iy PR U I P oy SR DY S SOV Do 5. 5, ¥ VS s S e s

[T T T O AT A e U R T A TR TP RN R FUTTUWR N R T a W W e T W W W WL, B VL HLN LN, Fame ™ D ST T T -
- . Padiatdate anfdiaf daf SaR el el e L ol

b
S
-
‘ N
v
FROCEDURE Comvert lnstraing to_orade tyne
CInstrng 3 Strinag ZU_types
VAR 6B s Grade_types

BEGIN
IF Ingtrmg = Frivate Tkl
6 1= Privaoe
ELSE IF Instrng = ‘Corporal’ THEN
:= Corporal
netrng & ‘Lieutenant’ THEN
: Lieutenant
F Instrng = Sargeanil’ TRHEN
1= Sargeant
ELSE IF Instrng = Captein’ THEN
G := Captarir
ELSE IF Instrng = "Maaor THEN
G := Major
 J ELSE IF Ingtrrng = "Colomei THLN
- G := Colonel
ELSE LIF Inetrng = Ceneral THEN
G = General

F

—

]

m
m
Lﬁ
m
Gt G G bt

G

G = Jnbkmnowig
- _ END
-
PoRCTAUN Valdad tap oD 8 i _Tepee 1 BlUuLEedd;
*
BEG I
Veliou zip s= Troed
FOF [nde 1= 1 70 ORO cZ.iEN. DU
IF NuT 7 DIvde J W 0 0 we vy EBiesir 3y

THEMN valld Tip 1= b=bizg
Eriusg

FUNCTLIOHN Valid _grade (O 1 Grode_typer BOGLLEwIG

EELIN
Valid_gr ade 1= TRUL:
» [F NGO G h Frivarte, . beneral i
THI;:.N Valia Qraue - Fra.Zig
END:

IR
FEHERNT

N LI i

Wity (Franiler . gty sow frezfced Cluz, I 1
WEITTE Frariber ot dwst RETUFTe o0 a0)% .
REmDiiv CEINFOT y Low o3
wivi TELIL WFruminer g
: Wi s vaald Z3ip recw I
v [F NGV veow o= NLbor Tiedi
REFE W]
Faah & = lwunos
whi7E cFranmter, Eiter B3O LOSLo0d LGE]
WLt Franter SF O jusi e iobie r Ot S3ngs o POeiied Ceodatl
.
:
Fooovibitos iyl g maghe 203
. : A v] . C1T - oy . -
WhITELN Frainver
HA L vedlaa S tHa by O
. - . e et R B T T N A

PR S, LY

o

s : R v = IR ‘..-’..'-"- - - . . . - ST e
POV P RPN L NP PR IR, O U, JU] Y T PCTP D T ST S0 R Y Sl I S SR - S0 WU P Sy e. S SN, ST EP IS s e

ARt Il lind 4

P S T Yy T T Y I T v U vy I T T -iT,-'-'&'3‘?‘Y"‘1'Y‘V‘\';'t‘i‘l‘;ﬂ-x»‘:‘-VT

v Low_o = iyuicle Thiers
EEGIN
Low_z :
Higrm_o 3
END
ELSE IF migh_z = NULL THCN
High_z 1= Low_z3

i

= RIGNFG5567

REFEAT
Low_g := Nonej
Migri_g 1= Nones
WRITE (Frainter, 'Enter low U-Grede, 3
WHEITE «Frirnter, o Just RETURIG for ALL:)
REALLIN CINFUT, In_siring);
WRITELN (Frinteri:
IF I _string = NULL THENS
BEG LN
Low_g 1= Fravate:
High g 1= bGenerail;
EMND
ELSE
Convert 1imstrima_to grade type (Im_swraing,
ow g3

UNTIL Valid _grade {low_g':
IF NOT «High_g = GBeneral) THEN
REFLAT
WRITE (Franter, Enter tigh U-Gr ade,)4
WRITE (Frinmter, "or just RETURN for singie O-Orage:
READLN (INFUT, In string) s
WRITELN Frinter:
IF In_string = NULL THEW
High_qg := Low_aq
ELSE
Convert_1mstrang to_urade type (Lo etrainag,

hrgh_oig
UNTLIL Valid_grade wHigh_qoss
END;
<3
i '
3
i
L3
FROCEDURE Irmitiaiize_courmters:
oo
BEGIN
Fvt_count 1= O
Larp_count 1= ug
Sot count 1= wg
L _count 1= O3
Capt_count 1= g
Maar _count = 0;
Col couwnit g= 1y
Gt‘_’l’-‘ Cownit g = O
EnDy
s
FROCEDL € mEad resor L Ui Lo re Lt B aie e LTt or L
S RIS AR T R 2 SN R A DTS TR

R o
End _or fale 3= Fowobs
L Th .

BLoiii

FrEeDL D o« falo. Trtiess

[T S VR T

e - - . - - - -
- R L K
N . . . b e . - CoATN T
- PP P L% ey B ettt st .- - . e e e e e . - R - R -t
L WP TP PPN WO AP SR SR SO0 WA TS WY W S VA SR8 WP UOT RE o U W YRR, WAL Y0 PR USSP, VU, 1PF. PP, YRETS S WU, P U T . UL TR PR, WA WL

e r———i—— — ———— -

LN LA AT

LB ame cn g 2

AN A

L s g o

T T

JUCEE I S)

BEGLid
REsDLN
RN
REwDLIN
RERDL.MN
READLIN
HEADLN

FE i in

Rzl N
eI
READLN
EiNLs
S

L B a1~

(Data F1ile,
[S - I N)
(i'ata _file
Date tile
WDatea File
(Data_+tile

iData _+1ie
(Data _+1le
Lata _fiie

End ot file 1= TRUE:

ENDg
END g

A

FUNCTION Matches (Low_Z10,
Low _gr ade,
Lurr _mec

BEGIi

Flatohes 1 FALEE S

{F WCwr FRec.l1p
LU reC.lip

High_Z1p

Loty Praities

GLven 0

Eranch)

Commaind
Street

Cityrs
State:d s
Counury
Zip)s
Grade

L1p Lype

s Firle structuwre

= Low i@
= oMaghe Tap

el

raf 4D

(Curr rec.brade = Low gy =dues aalvw

tCurr rec.Wrade

Hiah or ade

THEN Matches 1= TRJE;

Erils

FroCEldrl Frocess metoh s

FRUCELURE lrncrement urade coOunters

B (1
Ceate Counitoer
Frivale
Cor piar sl
Dar gewnL
Lievtenan.
Lapteain
e 10
Cod e

LreZinedt™ &y

PRl E Db P i LAl

RSy S TU ST INCR T L‘-’,

Fvt count
Corp _count
Sat counl

LU _count

Capt _couwt

COh Curi
[T SR IR TR 5
L e € Tieifine

T

H
}

n

LLounter

s Pyt _count +

T Lorp_count
ot Zouwnt o+
- Lu_count

HES WY ol
Mayor count = Faior
Lol _claen

Cadlun

PR A S

Hragh _grade @ Graae _types

A & s A & A S 4 AN b oded

Grade_tvpe.

e oo o S

- s M A MR . IS A & A4 &8

I NENRE =P PP N SN S R S

: . Wil o ticnme Lo) Loa evbad s
) BEOIN
WhiTE ranter . L mame Cdnoe 003

Inde: 3= Lings . + 13
ENL
Inde.w 1= Inage=x + g
IF G_name [Inde:] o= then
BiiGitd
WH1TE (Franmter, biane g
FOR Indexl = Inde: T3 URL (S_name.bLENY D0
WRITE Frinmter, G_name Lindexll) g

D

END
EEGIN
WITH Cuwrr _recot d DO
BEwN

WRhIiTE «Franter, Tatle, Elw.o g

Write_given name (Given_nama:;

WRITE Frinter, Blank, Las: rfalhe: s

. WRITELN (Frinmter g

o WRITELN «Fraimter, krancnog
|- f Wh [TEIiZI (Franter, Comnand: s
B WRITELN (Franmter, City., , . Biant. Stete s

N WRITELN (Frinter, Couwitry, bBlant. Zips

L]
. WHRITELN wrincer)s
._‘l WRITELN «Frinter):
DR WHITELN (Fyanter g
ffﬁ: WELTELN \Frinter);
e WRITELMN (Frinmters;
e il
i END;:
{ <a
A .
SN Bt .o.ind
) IF WNGT (Dawwr veocoraczip = dip_states briky
BEC LA
wh ITELM (Frarmter)
WHRITELN wFranter, "Total for o.p LB state,
= : s l1p Cowiitod
. WRITELN (Frinter s
';’: WRITELN wFranter)
tjj WEHITELN Frinter s
el Jip _slate 1= Lurr recCurd.ziaf i
- I1p count 1= w0
_!! el
2 ip countl 1 Zup _count + |3
(- fncramnent Ot ade Counbers (Lurr rel oo S, 00 = 08
_.;';-. rranit labiels
L Erss
'ﬂ,*. -
<o
.
..
FrocBonir b b ran grade LOLei = Lidw Wr . " e r 1 ar ek % g0 3
. ey
;:':.“ Thiw o G oo Y SRR SN]
B ‘...:/ .
O e
LA -
-'-_.": FrolEwlndi, Friit tha= oo o
W

N Bl

A WRITELMN (Friainmier, Total tor)
Grade_svring, 1%t . TYobalog

END;

L}
(W]

BEGIN

FOR This grade := Low gr TO Hiagh aqr Du
L IF This_grade = Frivate THER

Framnt_this_toutal Frivate e Fvt o counity
L3E IF This grade = Corporaitl THEN

Frimt_this_total « Curporal « Corp_count)
ELSE IF Thais _grade = Sargeant THEN

Frant this total (Sargeant . Sut _count)
® ELSE IF This grade = Lieulenant THER
Frant_thie total (Lieuternant |, Lt count)

¥

P Y T P T T TV T T RERTY v m e, e

ELSE IF Tihas_arade = Captain hEN
Framt _this tutal Captesn Ty Capt counto
ELSE IF This _grade = vajor THEN
Framt_thie total Masor s Paior count)
ELSE IF Thas_grade = Colanel THEN
Framu _this tolal Coloreld « tul Towuni ﬂ
ELSE IF Tihis _grade = Beneral THEN
Framt_thae total « General . Len count) g
Eidl:
F &
s BECiN
3 PETL L vdl et e
L FE sl PRty
b REw= 178 Franter g
inittallle _CGuhvler 33
Clfp _Lount T ooy
EOFLle 1= Tinuls
Seden 1 Uit 1A v G T1ER . Mot T . e ot feea sl ol [SETUE
= d el 0d

SRRNTN R A WY RV I CRT S U TR
Lar .o oe® TS LUy v e v 3, L1,
wotliobk Tl N J

owaid

IF Metoinhes (Low T1p, High _-ip,

§ oW _grade, migh_grade, Cort recsrd: bk
S routess_ matohs

. heay Record «(Curr _recora, EOFLio. g

[_ -

ey U wWwhiile !
WL TELH «Erimter s

wivlTelll Framter ., loval 4o Carp e L1p Tl : W L3l Cieaafilvg
. Wini TR eanter g g
X WET icid arranten g
. WhliGuole i anuoe g
: Froat.os wb @eoe Yot Caonws P aviael e PG g St oswae g
g el TR Lotha t e
t © Chb @ wrr poimes g 1
E R U S |
¢ { .ee wooo Tae 0 G ier thil e 4, ie L O T T T T i REWR L TE o to L e
[.
Chdn . :
- 1
hd {
{
. |
® i
I
I
RSN Ot AT SR . RIS L . el Cateld
l':.ﬂ."!-l':‘f:‘:'};":}:‘ﬁ'::(’;;‘:_-_‘; q'_.(:.-':l‘;“ﬂ':f:('lf:ﬁ‘:{:f;-':":._\';-';- P PRV E P A PE PR A AT A PR IS |

B el o S0 A Jiell Sadh e Sk Snd et sad seuih Sind Sad b et el seath sl SniiMadiotad Sl Rl Sal Sad Jhd A Jh S Sal e

A
4
.I
4
o
4
P

©f
oa e
[
e & 8

W

Military Address Problem
(In-Line)

|y

)

oy -

Ce Franter, Input); $DeBUG+: d4linesitesl’o.

NI

DS
“+
-
-
r
-

Foroimae MeoeS (Dabs

»
[

R
‘e
PR
O
e
e

'W
B
-
[

-

L OMHS

Elcarid =

s
m
N

Strang_4 type = L3TiING 1453

Surimg 1o _tvpe = LOTRING vlors

Strang_{S twvpe = LBETHRING (1293

String 20 _type = LETRING (Jurg

Grade_type = (Fraivate, Lorpotal, Saraeant, Lievtenant,
Captain, Magor, Coionel, G2net ai,
Urmbniown, None, #il)as

Lip_tvpe = Scring lu_tvpe;

Fiie _siructuare = RoodRD
Titie 3 Strinu 4 _tvipes
Last_nmamna & Scrlng 15 _tvpes
Given_rneme ¢ otrang_ 20 _types
Braslh @ DL ting ot Ny pes
Lltmnar-d 2 2uraing_J tvpes
Srreet @ Strinag JO_types
oty @ Siring _Ju tvped
Starte : String _lu_types
Country ¢ Strang 1-_twees

1P s Straimg i _types
Gr ade @ Or cae types

END:

Vish

F : TEaT: { Do NGOV aiter this line

Low_z1p, Hiah_zi1p. 1p_state @ Jlp_tvpes

Low ograoce, HiIgh _arade, Grave_state, Thils_Or aue 1 Or ade types
Cuwrr_record @ Fille_structure:

EQF1le : EOGLEMAN:

Data_+1le : TEAT;

Frioter : TExT:

[rde. ¢ INTEGEFR:

Inde .2 ¢ INitoers

Fvil Zounit, Corp _count, San _count,

Lt cournt, vapl court, Hajlr _Cowulii,

LG S dunt . e sowinh F G I SR T SO
Z1g count 3 IHVEOC 3

I _ztring @ Striag | Ju_tvoes

VvallG_Zap. VMaillo ar ade : I Y Y Vi

T 1deta vileog
SREENE § 01 I

e WFraviner e
DoTount 3Ty
LIS Y S8 -

vy
:'I .

o
M
.

Rt S0 S04

T
I'

kot i"‘r.f

-
LA,

’

e g e,
-

a4 P

e = e S ghasmt _Saste Bt dhate gl dancdh Sl “Nhadi gl Jhe - Saadl Shaih 3
N S A geE et s e aue Sred BAS RS S- ol 00N il it TSRS T b

S T S TN
LL_count 3= wg

Capt _count 3 03
Meis0r
Col _couwnt = wg

GCedy cwwto3 - 03
r

Core T 3= Wy

i _canr
ECri1le o=
REFE i
Louw cap 1= iwdiws
W lle rrinter, Enter low
Wihhiibe (Frinter or just R
Pl CINFLEF Low_zZ1p)s
WhhiTbElN Franfter g
Vwllo_zap @ TRUES
Inge:,, ==+ 70 ORD
IF HOT (Low zaip Lindex
Tealie vaird_Cip - F
valld Zi1pg
show Tip = RNULL

11

(SEWIY i

LINT Lo
I e
EF b
DY u"‘
Wil e Enter
witlit (Frincer, or
vidFui . Hiab _zaipo s
WHRITEC (Frainter g

THEN

Zip 1= NUis
Myw
Just K

e anter,

. r .
r\Ln'._z;_lw

‘i 0 Zaip = Thubs
Fob indes: 3= 1 TO ORD vkRrgn_zip.tBERY DO
IF WNCT akaghy 2ip Cdrae 0 IN T 0 o0 & 0t ates
THEIV Vaiitd _z1p 3% Faloie
LidT il Vealid 2ips
IF Low_zip = ool THEN
oI
Low_ZIf HES ;
Hige _oip = FWESTL3wIn g
Bl
CLoc IF Hiab Zip = NULL Triid
riigin _Zip = LLow_Zips
REFEWT
Low_agrage = Nonhes -
Higiv_grade 3= None;
WHITE (Franter, Eriter low O-Grade, 7
WELTE Frincer, "0r Just RETJUAN tor e«
FEvlnid (INFULT, I straina);
Wh [TN WFranter) s
Ir In straing = NULL THEN
B o I
Luw grede 1= Frilivabes
Hiabh _agr ade @3 Senerals
3
SO
BEGIN
L ll'v_":tr';H(J - Frivate Tricooa
Low_oprade = Frivats:
ek IF In sty ing - CJorreor al QLRI
Lww Qb ede s _0rporal
cLsk lf Inm =lrirno - Llewiotie: crdt
Lo Qrade 1= Lleatrenant
CLSE. e 16 Llraing Sargeenst Tin
Low aQreclder 122 Sargeant
cuse Ir dn wtranmg - Cabrledrn N STaa
LLlw _aF a2 Caplaln
Eize ir in ozivairng ¥ Mleoer T
COW G Ade 8 s AL
el IF In =trana = Loaohed VAL
oo gqpm 2D 3= TS0
R I TR

W e e L R . i
7 . S I TP L G SIS S S S0 P W SO I

cetal code, 2
ETukRN Tor sil: ;

_ovp. BNy DO

JINL v .. 9 o E

e SE H

o poeted
ETurid For

Coude . ’

S g @

lank Jo

postal

)

M TR e T LT T

codes

AR

P e " Ae A s e Aae ANRJEAS S Al SAR A s AN S 0 ,‘r*'r'."‘l
el dr Al _s 1t ey - Ot el iy
Lov_grade 13 Denaral
ELSE

Luw Uradd 1= Ul fiwiig
END:
Vealird _grade 1= THRUL:
IF NOT (Low_grade IN [(Frivate..Oererall)
THEN Valiad_grade 3= FAalsgs
UheT . Valid_grades
IF NOD vHigh grace = General) TrkEi
REFEART
WrRITE (Franter, Enter haigh 0-orede,)3
WRITE (Frinmter, ‘o Just REIURI for sinigie G-Gradge: 3
REWMDLN CINFUT, In_string);
WRITELN (Frinter);
IF In_string = HULL THERN
High_grage = _Low_graaqase

ELSE
BEGIN

IF In_strimg = "Fravete THLid
high_grade = Frivate

ELSE [F 1In_string = Curpwr &l TriliN
High_grade := Corporai

ELSE IF Irn_string - Lieutenant Triciy
High_gtrade 1= Lleutenan.

ELSE IF inm_string = serdgeant THE
High_qgrade := Sergeann

ELZE 1F 1n_strang = Ceptain THEW
Hiah _grade 1= Cavtatt

ELSE IF In_siring = Fadws Trikw
Hignh_grade = Major

ELZE IF In straing = Jouluneld Trbiy
High _graoge 1= LCoionel

ELSE IF in_straing = GeEner al Priisva
High_grade :-= GCeneral

ELZE
High_greaoe = Unenicwing

END s

Valid_grade := ThUL:
IF NOT (Hianh_arage [N [Frivete..loneral iy
THEN Valid_grede = Lo
UNTIL Valid_grades
EGFile 1= FaiLSk:
WITH Cuwrr_record DO

EEGIN
READLN tDatau _+3le, Title s
IF Title ‘emeaw THEZN
E‘E\.‘A’N
FEMDLIN (Data +tile, (oSt foae
READLN «Data_r1lwe, oiven _rian s
RERDLIN tData_ f1ic, Br-nliiog
Pl (Daltla_tirie, Command.
FEADLIN «Date fF1ie, Street g
FEADLN (Data_f1rle, Cat v
ey it (DE‘L&_Q.LLE. lated
NEADLIN (Dabte f1rie, Lountr g
FErlN W Dale tale, Ji1o0:
REmDLIE (Data _t1 @, oarass g
£
il SE
P 1ie 1= ThRuk:
il

ipe ztate Jurr recovrd,itgo:
wis L NGBS Lie DO
HelGIN

LFCUr . her L L. da k. e D3 e
. - - ‘e L - - * D = - K -‘_ - .-- " -
AR S RN . < . - N SN ‘ii
A e S Lo BRI SR S S R SR S S SO J° S S0 IR

. g

Sl 1 F wranst e ;L,_J L P TR A W YW

Wurr _record.br ave = Low_gr ader ARND
(Curr _reccrd.Grade = High_graages THEN

BECGIN

IF NOT (Cwrv _recorc.zip = Z1p_stater THok

Bk i
WRITELN (Fr
WhITELIN (Fr

WRITELN (Frinkber)

WRITELN Fr
WRITELN (Fr
Zip state :
clp_count s

END3
Zip_cuount = Zap
Case Cwr_record.
Frivate @
Corporal
Sargeant @
Lieutenant 3

Caplain
Major
Colonel @
beneral
EiNDs
WITH Curr record
BES [N

wrITE (Franm
tnde:: s= 1:

inter s

inter, ‘Totel +or zap « Zap stale,
2, Zip_countyg
H
1Nnter s3
1ntet s
= Cwrr _record.caps
= Uy

count + 13

Grade ot

Fvt count 1= Fvo_count + i
Corp_count = Corp_count + 13
Sgt count :# St _count -+ 1
Lt_count := Lt_count + 13

Capi_count Caplt _cournt + g
Masjor count = Major_count + 13
Coi count = Col_count + 13

Ger. _count 1= Gen_caunt + 13

Lo

ter, Jitle, biand 3

WHILE Given name [Irnuce.] Elent oc
B i
Welle Franter, BGaven_name [lndeslos
Inde:: = Inde: + 13
EiND 3
inde . 1= Inde. + 13
iF Givenrr_newunm2 [lnde 3 . * then
BEGIN

WHhITE (Franter, Blani);

FOR Inde:I 1= Index TUO OFD (Grven _name.iBl o0

Wk]
END;

TE «rFranter , Gaven_tiame [inge 230:

WHITE (Frinter, Blank, Lazst _name g

WRITELN (Fr
WHITELN (Fr
WHRITECLH (Fr

1nter)
1nter § bBranct)sg
1hter, Command:;

WRITELN (Frairvter, Lity, e 0 Blero ¢ Ztate.;
WRITELN (Franter, Country, Bletn J14-3
WhITELN (Frinler s
WRITELN (Frinter s
Wr LigEls «Frinter v
Wi TELN (Frainter s
Wh1TELTe \"r'rlr»tz‘;'r/:
EMND:
EZriles 3= resb>oe g
Wi i oCurr e or o T
Eoirabe
Pobrmeid voambla v1 e T340, H
T inies [ER XS BRI
BL o1
Feraln ol v Us T hie . et ooy
i e flle, a3l e i 3
REsaltbdd 2 Devie tl i Brancho s
N ieiond v oaCa_Fliw,e Lummaios 3§
Fbwln N Detla $1le. ZTireet g

Fllebioe vioaba t1le, Ci1nm.s3

S dadhntondoctdon S Metente

Py P S |

caancoAut g s RatBes e St ek Balil i St bedl St A MaEr A RN Pialkaf AR AN A e

F\'E.HL)L[\‘ Chiaat ::‘__" 1 :\k' n Sltale H
READLN (Data _+1le, Counbtry);
READLIN iDeata fale. Zipog

-

REWDILN (Data_fi1ie, Graos)g
" END

tlf1le = TRUE:

=N

=iileg
WhLTECIN rinmvter s
Wh iTeiiv (F anter Total +or Cap « L1p_statle, : » Zip_counts g
Wi I TELN (Frinver b g
wrlteEoin WFrancber g
WRITEZN (Frinter s ﬁ

FOrnn Thnis_arade 1= Low_greae 73 Hiogh grade DO
{F This _arede = Fraivate [HEN
Tikedd vrranter, Joutal for Frivate 1
vk _count)
Foihis_agrade = Corporal THEN
TELN (Frinter, "Total +or Corporal 15 . !
Corp _count)
ELZE [F Thas_gradge = Sargeant THEN
WiciTELI Franter, ot el fOr Dargeant 1
Sgt_count)
BELZe IF Thie _graue = Lieuwtenant THE
[TELH rinter, Total +or ifleatenant 13 . i
Lt counmty
EiosE Ik This_arave = Captairn THEN
wrlielid cbyaanter, TOlal fuf Capiain 1= ,
Lapt _cawnty
Leze if Tl Jredwe = Pleadar iy

£em
b1
-4 -

n

1

wh TR rrraner, TOUaL tor s iois 1

g
A

Slaaor counit
medt I Tins arade = Colonel TRl
Pitv I T aid vF e 3 ber o TJolali tor (Ciunoi 1 R
—Ql _zoune
Coese If Thias arause = General THoN
whiikbild " trincer, Total for Leneral 15 N
ven count *
CLslE s ata fuilers
CLU-E Fruinmter i ;
CLODE CINFUT) g
ooxee DU ONULL el
El.

EF Trls CINGE wer ST SIGH G Puleadn T R eWRITE R 3 Qe il r v

*, . - e L
- - R R - . . . o PR A RN
S ’ N - . . . - T e e s S S T N
P e R T B : ; " PP PR ST G ST VR PR P V5. AU S U, FUILE,

-

s

N)

e

[

Military Address Problem
(Object~Oriented)

AOCRr Viedds wwale Fliais, brlnter, lnputo: Lidervgt. WHlltiezioc
.
J
;
Luiva T
Bl ar = H
T Y F e
Oy U _LvRE T AFrivate, Corporasl. Soraeant, Llentenant,
Coaplain, Marair, Colons.: . Gerneral,
Unibncwiv, NOHe, w110
Zip_btype = LSTRING KR
<
5
RERERARFFRDIAPARI R PP ERRNARRERFE RS L ERRP F R PR PRI RIPRAI P TRy o
DieaBEC T Frinter ublect trettakagrranrsrkarrrea N ARRR LR,
y
=T
Fraonter 3 JE»T3
s
FROCELURE rRllvion . _Upen_pranter s
BElie
REWriic wWFranter);
EiDs
Bl
s
ARBIRRARA D IR RARRIRI P PP AP RIS RAFRDIBI AP S P S RES R RP PP 2 PR TR RS |
ST OT s Jdeser 1npas GEJECT ARATCRARERARARARRAAAARS R XA RS X &
N
p
Mk LE T T L]
Low zip, High zip 3 Zap types
Low_grade, High_greade : OGrade_tyeoes
s
”
s
FROUEDARE LSDER _Seiect criterias
;
T F o
Strarnyg o Lvpt = LW tb bl vy
v !
v =sraine @ Sirnu Ju Tvpls
.
RN IN TR 2 S A S S St R A :
vinshreng L.pes
e [CR .
ANEN O]
b ar=vrong - Frl,ate ST
D osE Frisats
- CLwe It anstrig = Corporzd T
~ot= Zorpor

st rng

e W_UN W WL LN s e \‘v

.
.

R

- R "D WIS AT T &
;‘i ELSE IF Iniztrng = " Sargeent I HE
N G 1= Sargeant
e Erte IF Imetrog = Captarn ARSI
~s G 1= Lagtain
ELSE IF Imuirng = WMasor THET
- G 1= Msjor
i" ELEE IF Incwtrro = Colonel T HL
- 5 = Colaonel
- ELSCE IF Instrig = General THEN
5 1= General

T
i

Lmb mown H

v END;:
.
".- CT
- i
» O
-‘f'} Pl TION Valad_cap (2 1 Zap typer @ Boloonlig
- LS

y BEGIN
Valid_cip 1= Tiubg
FOR VARl Indes 3= 1 TG GRE 200w Do

I NOYT 2 [iImdedd IN L o o0 5 0 Liafa g

R ThiN vValia_zip 3= FaoZis
o END;
o v
- FUNCT TUN Valid_graue (G brage tvpe: @ DOloewba
- v
SRS FEili
':fi vailo gr ase tF o TRUEG
o IF 107 ve I fbrtvate.s s 520w 21 30
THEW Veldld arade - Feslong
B
;
.-
BEGLN
REFEAT
iow Tip = NULL:
Whiie (Franter, Erter Jow post.os Coe, e
WRITE (Frimber, ot oJusal RETLEN foor il e
RedDON vty bow_zapors
WEITELN (Franter g
UNTIL Vealid_zip WLow sipts
IF NGT (wcow_zi1ip = NULL TekH
‘ REF E543
AN Haghy zap = NULLC:
s WRITE (Frinter, ©Ernter hlon postal oG, _
' WRITE (Frimbwer, S st BEVUR G ¢ Lt sitei i 3 UBL A
BN READILN (ITF L. maan ripss
R WR I TN oFe cotesr
“ WITIL Valila . IO S s
. it Low _Zi1p = poee Tkl
3 HEc i
Low 1o HE H
Hiagih 21 3= Trw gy tSar o0 g
£ L
oo IF o oraab_Sopor oo e
Huigb _zip - o Sl
Fhh et
LOw Qimalt 8% Dhoetie g
Hian _arads 17 cwehes
wWhiie wrirntar Bl low O ue :
we bl P eanoee, L B L L A A ol
SN S E I N | N U SN SR A SR
s il P e H
. ., R . - . ~ . . .) ‘ N LR
RS .\‘..\';l‘;A-".;}n".;l';A:A.“.A.._n;" ‘;“_‘A .;_;' e OO, '..ts'..':.:;x";h:'.\‘- LY

. e b

| aCaliCalics Sad ndiad St s et A ek g B "l b~ S A~ b B AN S VA AR SN SR A BN AR B A
{
!
ir Ly =0t deed = e e i
-~ S -
Btiu 1IN
' Low_grade 1= Frivate;
: Flgn_grade 1= Gereras s
' END
Bk
[Convert 1nstring_to _yrade_ovpe (In_strana,
l. Low arade s
\ Vail1a grade (Low _grade:';
b Ui awrigh urave = Generaly THEN
{ SEAT
WHITE (Franter, Enter high O-Greoe, I
WRITE (Frimfter ., ‘or Just REIURN for single 0-Grade: H
L AEADLN CINFLT . In_stringo
WHRTTELN (Frinier) s
IF Im etrang = NULL THEN
b Hiagh agrade 1= Low_grade
{ ELSL
Conver t _angtring_ to grade tyvpe Cin _string,
@ Higlh arade s
Ui L Valrd gr s oHuigt _arades s
EI<L=
-
L
. . RREPRRERRREB I ARARIRRARFIRDE R PP ERREI AR ARPRRARER BRI KRR BRDI NS PSP n
b .
< CoezCos File oLt RESFARERRAREEPAERPPF P ERARF TSRS RS
-
S
® Siraing 4 tvpo = Loingidh cdos
Pereg L Lers2 F o owoieediba b
Lrang iDL tvpe T oeTSieclias 1D
: Ctype = oLobinfoes ol
<
® o
File structure = RECGL
iltle @ Straing < types
Last oane @ String_ 19 tyoes
Gl ven Deobe = Sbrang 200 types
Branch ¢ String_Ju_tvpes
Command 3 Swring Ju_t.pes
- LDrreen @ String o Lypes
Citv = Etring 0 tepes
state @ Soring Do typead
Coantry 2 Strainu 19 tvpes
Jip ¢ J1p_UvpeEs
Ot cger & Uroue b opes
L 4 el
L SRS N N
9 N RV S 0 - R AR AT
Fr O A N TR FU O I
SIS
° ;.f.._L| [R e
-'N' ava ..."'_ '..;:A“JA-_A._" oAl ;.;A_'LA—';I-.:- ‘.‘.‘- L P i A e ';' ';- A.);‘.._'.__'_: a \.'A'Q...‘-. s

et 2NN Sl

PRI

ST)

e ta acterR

Aemtat a ot anlal,

R T T Ty N W N W T W W W TV o O o e e "1
FUNCTION FILE__Find_maton 3 BOOLE g
VAl Edrile @ BUULEw:
FUNCTIGON Matcres : BUOLEAN;
BEOLN
Matches 1= FelLSE:
IF (Curr_Record.Zip = Low zip) AND
Lurr _recoro.Zip o= High oip) AND
(Curr_record.orade = Low _grade) ND
(Lurr record.Brave = High_grade)
THEM Matches := TRUE:
ENDs
FEGIHN
EdFile := FALZES
WITH Curr _record DO
EEGIN
REFEAT
READLN (Data _f1le, Title:y
IF Titlie - . »%a®’ THEN
HEGIN
READLN (Data _+1le, Lact named:
READLN (Data fille, Dulven cama g
RWEADLIN (Data_+t1le, Br anciisg
REMDLN (Data_ti1le, Lanmand: g
READLN (Data_+1le, Streel’;
FEADILN (Data file, Cityis
HERDLN (Data f1le, State
READLI (Data +1le., Countrysg
REWDL WY (Data_41le, Z3f 03
READLN (Data fi1le, Grade
END
ELSE
EOFile := TRUE:
UNTIL Matches OR EOF1le:
IF Matches AND (NUT £0F 1 les
THEN FILE_ _Find match 1= TRUE
ELSE FILE__Faind match 3= FOLEES
END;
END:
FUNGC IO FILE . Send istle : Svrana 4 ¢ opeg
Ftisjid
MeE | Dend Tatle 1= Loy vrestiadinrtie:
END ¢
PUNCH IO FILE zenig_dwst tieme 3 ozdiriaG Lo T ey
BLGOIN
Flle oend_lect niaie 5= Lore roclra.eest mah g
EMNL
T B B 2 R R TN SRR B N N et
P DN O P A PP PE PE L VT VE . PEPEVE PSR PR T S8, PR ULV LV L ¥ NI P8

PP E VL TN T R TS Mg g A A e G B~ B SN AN]

N
1w BEGIN
FILE Send_givet. n
{ EriDs
\

. (B}
Ve L
W~ :
.
. [

n
£
o
-
[2X]

UN FILE _Seno _branct

j. BESIN

~ FILE __Send _pranct
L END;

-, s

FUNCTION FiLi_ dend_Lonmand

FILE__Send_ coummanu

-1

-

Foii Oiv FILE_ _Sernid City

[

G LiN
FILE _Sernig_caty 5=
ENLU 3

FUNCTIOH FILE Send State :

FodCTION FicE sendg _Jlounur,

-y
FILE SEHU'CUuerv

FUNCTLUOW FiLE send _raip @ Z

BEGiT:

FlLidl TION Flod __ 2werad yreaoe 3
cEL LY
Ploet oG sle
Erei :
Thwdecwune ok Llwse 11 ie o

K.—C s
CLUTE voata Yia
CMNL:

Y

ame 3T CUry _reEcdr .ol Jen_f

t Thrandg Ju_types

t= Lurr_recora.bBranchy

: Straing_ JO_types

15 Qury _recor e wfivnanidng

Stflﬁuwlo_tvpa;

Curr _record.City;

Slrang_ I Lvpes

= 0urt reECOro. st ates

f Serava_ 1%L e

3= Curr record.Countr vg

1p_types

Curr record.lips

Gr age Tvpes

R T e A T e e

I ER AL E R A SRS AN ENEREEEEREEENEENEEENEREENENESNERESE NI I S N

A At Ao A e B A 2p A e 6 Auh And AR d Bt Tl AN A e A N A AN AN A AN A v yTETy T

L
c ARREPRAARAAREKRRRAFARARPRRRDP AP I RRTE LIRS ARFPIAEAATD AR F Ry, ‘
-
. oL s Cabel obiect REERRRE P FR OB AR D AP I IR
o
L
FROLEDUNE Lrabbi_ _Frant Labeds
-
Lo
Fulde Tione Janvert _oiver name - liem 3 Srring_du type
: o Suring_Cuw_tvpes
<l
RSN
temp 3 Stranu_ 2o tepes
Inde.: ¢ Integer s
.
Eb i
Temp - ML
Ilnde = 13 |
X wWHiILEL Itewn (Indo J By owier o D
! EELOLM
. CONLnYT (Temw . l1iten Llnge. 303
- Inage: 1= [ndes +« 13;
b EiND g
t“ inde 1= lnde. + L
1F «Item [Inde:] x5 THEN ?
f, Beo i
. CONZmT viemp . EBlard g
- REFET
- CONLrit Temp, Ttem (Inde . dog
lindes ¢= (nae: + 13 d
‘. WETIL Cish o lnoe . ltew s
- END: L 1¥
-_" Cunvert Q) vel e 1= Temps
; Eiivs
s
-
L. «
BEECiiN
WHRITE LG (Framtor, Flie Seno_titie, Elain,
Canvert _gilven mame Floth | Send Ol vee damer,

Blent 4 FlILE __5':"'\.1. last ticonw g
WRITELN (Frainker, FLCE Send by anctio g

Wivileihs vranter, FLILE | Sevd_cOmmainio g ‘
WL ELH Franter , FILE Send 1oy, . o Pl mena stanod

Whildin trranter, Flie _Zenu counir ve Baeni o Fave | mend 1003

WD TIZL Frinter g

wWin {TE L4 cFranmter g

Wit L tie b a0

VEwdd trrinter

-r
P .

b

&
el H .
— e

L S I R U P I B A S A R A= S
(SR T
.
"
o
. BP PRI AANR PP R P I P PP PAPRAE A PR IRTP RSB PSSP RPN
N YO T T R RSN TSN L R TR enNBpaseRrItPrRREARREIRARRIERARREEROS '1
o
.
PAZ1 A TR R A G
fovl LW ile Luad o osaind ¢ 207wt
. . .
b DR Ao TR WS VR 16 B S L] R S R Sannbi . {
¢ Db oottt te ot . S N A S
- .
. - - - . - - . - - -
ST ey . - MRS . B S .
P S I RY SF T RN RT, PRV PP SOSAL S TP T SR SN S0 S iy W V.

pU—— — et e s aa ve e ek s St s St Sgh i M-SRl s
Lljs =mlmin LI S N
oo
{0
o,
0
N
W
FROCEDURE COWMITER __Imitialize _counter sy
o
BEGIN
Fet _count 3= g
Corp_count = u;
Sat_count = Oy
Lt _count 1= O3
Capt_count 1= wujg
Major _counrt. = O3
Col _count = 05
cen_count 1= uj
Zip_count = w3
END:
ol
-7
-
i
-
LR
FROCEDURE COUNTER_ _Set initial Taip statey
{s
BEGTIM
Zip_state = FILE _Send_zip:s

v Py
A P T T I T

Ty VeVvYY

)

FROCEDURE COWNTER

FROCEDURE Increment ar a
BEGIN
Case Luunter

__Incremet_cco

LN er <3

Q& counter

Frivalte 3 Fvit_count
Corpaoral : Corp_coun
Saryeant 3 Syt _count
Lieutenant : Lt_count
Captain : Capt _coun
Majlor : Major_cou
Colomnel : Col _count
General : Gen_count
END;
END 5
EEGIN
IF NO1T ((FILE _Send zipyr = Li1p_stal
BEGLH
We lTELIN (Frainmter)
WhITELW Franter . Total tor
s « Ll
W ITELN (Frinter /g
winl lellM (Frainter @3
WRITELN (Frinmter)y
Zip_state 17 FIuLl Zweod _Zipd
Zi1p_count 1T g
END g
Jip_cowt ¥ Lip count o+ g
[ncrement _grade_countars 1tk
EiND s
-
<l
FROZETHE Loitibe™ | Frant aroge Luiar et
A e e e el T e
DA Y A S R S S P A N R G PN SRR WL WS R Y N

VLot e

t

t
nt

et

Lip

_ EYETR ot Y LA RVE

oF Aue _type s

Fvt count + 13

= Courp_count + 13
gt count + 13

Lt _count + 13

= Capt_count + 13
Major caount + 13
Col count + 13

Gen _count + 13

@
i

THEN

1

iUt g

AR
. .o
At
b e A

OO

¢

coant

Total:

)

et utN Y O o

.
L]

g Oradie @ orave _types
FROCEDURE Frant _thie total
(Grade_wtiring mur s
Total : INTEGER) 3
BEGIN
WRITELN (Franter . " Tateal or
Grade_suring, EX .
END;
o
Brolh
WreITECMN (Franter)
WRITELN (Frinter;
WRITELIN (Franter s
FOR Thnas grede := Low agraae 10 Hiaob ar eve U
IF Thas_grade = Frivate THEN
Framt this_total o Friveate « FoU C
ELSE IF This grade = Corporal ThERN
Fraint_tnie_ total o Lorporad « Lorp
ELSE IF Thiz _arade = Sarageane THEN
Framt this total « Sargeant . Sutl_county
ELSE IF This _grade = Lieutenant THEN
Frint trhis_totald « Lieuwlenant , L1 _county
ELSE IF Thais_grade = Captarn [Hkl
Froint thie _toteai ¢« Laptarn o Lapt couorne
ELSE IF This _agrade = Major THEN
Frant_this_total 1+ Major W Mecdor
ELZE IF Thiis _grade = Colonel THEN
Frimt thas totel o« Coloned . Loio_ca
Ei_stE IF Tras _grade = General THEN
Froaamt this _total General Ca e
il s
Ny
N PE P BEP PRI RAEPRNRRRARP PP FIERARARREREERRPAREPRSARIRAERS AR SRR P
23
N rrecoeeatt MODDE ;
VYaR [STATICT Continue @0 EBUOCE R
F o3 teqth; (Lo HOT slter this line
v’.J‘
)
EEGir
FILE __Opei _filiesy
FRINTER__Upen_prinbters
CUOMTER _ Initiallze couniier o
JSER | Select _cricers i
Lontairnue 5 FLlLE__Find_meto g
COL el Sen _wnrtral _sip sbetag
whill.& Continuwe DO
Bloolts
COUiiey Increment _Lournter =3
L. Fracn paue s
contarnwe 2= Flile Fand mation
tidb g
whorreils Franter s
Wi bibiie RFrsater, Toted 400 oy Lo Ll €tz H .
CLUNITER Fyoant_Ggr-sge_toval =5
clul_ _Liose riiewy
. o rwn Lo Ut ridter Thiae caiie L SSAGie ~abes D :
il .

T

PP T TY Y ¥ Vv gerrRem e

[

D

FAr Clazsiiet (Feradllie. Tramztfile. Franter s Ld3debiagts cdsinezioes i ces

et e . e R L I - i~ T PR O PN
I T R N EP TP BN U I S A WP S S S i P SR Sl PO R G W e\ A 1.4

Nhem B A0d 0 a0 4 e Aia e -0 ase S ie e aend MR Sl A e Akl

Student Transactions Problem
(Functional Decomposition)

TvFE
Name array = P& D Aoy Do 28] OF Cikbg
35 _arvay = FACHED ARRGyYy (1..101 OF CHARS
Lank = (Ublect;:
Cbiect = RECURD
Neno o Lant g
Student_noaing 1 Tand_aryav;
Swcral _seswrity 3 S5 _arv av;
END
Vb

For o dEaiy O Do NOT alter this (10
Fermiile 3 TEX

13
Ireaenstile & TEXIZ
Frin_er : TEAT;

Commenid ¢ CHesfs

Namz 1 Mame _arravs

5% number @ SS_arrav:
Colunn 3 INTESER;
Fairstl @ Lindk:

FROUEDURE Shap lines (How maiiy ¢ INTRoo R

BEC

[

1id
For index 1= 1 TO How manv Do
WRITELN (Frinter)

END

FROCEDURE Feaau da*a_i1me "vmm w12l 8 TExTg
i
Civ o2 Cirdeales
EEolid
F\EHL‘ ol ‘. iw, o Dot rd o g
Figls 20w, ¢ e U e L

el
REriD WA tiles Ciioa 1
fdame (Lolam;m = 153 1% s !
END: }
FOR Coiumn 2= 27 Tl 47 pu i
BES [‘
REmD v tide, oo 1
T pumaer LCoiaten - 51 1= 2
[SERTAR

s T Cr et - ‘ R R BT
R . R IR

T T T T T TV N Y Y R TN Y OV N T L U T VTR TR TN ER

Flomision WA _ Y1)
il

FRUCECUURL Sear ch oWl Fownd ¢ Rudh. fmmidg Ve Uy 0 3 Land og
BEGIN
O 3= First;
Foe= Frest JNe tg
Found 1+ Ful.Scs
WHILE «F . NIL» AND (NGT Found) Do
IF F .Student_name = Name) nND
(Frubocial eecurity = 55 _numbier
Fi Found 0= TRUE
el
BEGIN
e
Foe= F .Next;
END3
EMD 3
FEROGLEDURE Add _students
ATSTIN
Coe F ¢ Lanig
Duplicete ¢ ROOLECANS
Ay YT Llnkg
FRUCEDURE 1Insert oiter (Arter _thuz @ Lane g
Vit
Temp ¢ Laint s
BEGIN
E NEW (Tenmnr s
P Temp .Student tname = Name:
[+ Temp .Social_securibty 1= 55 numbarg
P Temp .Next 1= Atter _this .Nexls
y Aibar_trhils Jhext 1= Temps
END s

FLINLTION kEmpty _laist 3 BOULE NG

INCMONENIENE 4

BEGIN
ir Firet et = Wil
THEN BEmpty li=t 1= ThRdk

)
v -

; N ELSE Empty_lizt 3= FALSE:R
- END3
2005
r - < 2
SO, .
. beaiiid
- @ it Empty_list THEN
5 inserc_after (Flrst)
Ei b
BEGIIN
DEarch WWupiitete, A, 10
IF Dupitcane TRHEG
BEGIN
Shap b s
B e L e T T L T S e T e e e e o L]
RN AT RS SN WA YA S P NP I ST AP I SRR ISP AP SPIP P NP I NN P SPIF IF TN 2 A S W

E I e

.
R RSN Y

>

Pl el i

P A A TR DT R N S

Wi TN Frinter,
Duplicate recourou: hui Addec

. END

. ELoE

g EEGIN

X 0 1= Fairsti:
. For= First JNents

] @ IF Name Fo.Stuoent _name THEN
2 Insert_atter (First)

2 ELSE

- BEGIN

" WHILE \Name - F .Student_name: AiND
- FouNest . NILY DO
. EGIH
8 O BEGIN

Q 2= 3
. Froes= O JNewxts
N END;
. IF Name Fr.Student name
% THEN Insert after (F)

ELSE Insert_after g
@
END;

EiND
ENDs

v
e

'!‘
r~r
wa

" FROZCLDURE Dy op _studessts
0
X Viaf
- Frecteedlna, ~otual @ Lind g
.)) I3 1t _trere @ BLOULEAN;
" <
- BEC iy
. Swarchi (1l 1t there, Freceed.nrng, Aotual rg

- [F ls 1t _thereae TiHEN
Freceeoing Ne .t = Actual JNe:st

2 ELSE
Ky E

ELGIN

L M

Ship _lines (1)3
WRITELH (Frinter, .
‘Student ot 1 Clese: No drop done. /3
END;

END

- T
e
[

.-

FECCEDURE Inguares

Vi

| 4

Filvcewdlng, Aolual @ Land

[]

:
[s 1v _there @ BOLLEAG
; -
BEGI
Duer Cir vl L there, FEOCETULNG, #C Lol -3
@ sb iz b _therae Ukkid
EBein
Ship o larteee 1
Wihhiibofd vrraniter , WNane, Le s L reCind.s g
END
ELOF
GLGIMN
() Shap _Janics i
it Die il P e s o Phaine, 1= fd 0 am o rELLr ., :

. .
fe e et B T I Y e R .“-."f‘ LR T e y
§. U G I I P PP P rwe A RGN NS AV G P APLTE TR T VU TR Y S ¥ PO N WY

e e B oot Bnt Ak 2e A S o dta S Mg iy B AN S B Ban i *oiee b aihh- and O Erdh S ARty T

Ly el o

[
e
i3
.l
FrROLEDUNRE List:s
{a
ISTETRY
C. F o2 lant g
BEGIN
G s= Farst:
F o= First JNests
Stip lines (13
WHILE - NIL DO
BELIN
WhITSLN Franter, & Jotada2nt foble .
F .5ocial _selaritvss
F o= F ,Net;
END 2
EiNls
FROCEDLRL Error i
BuCGIN
Leap danes (1
WRiTECTe tFroanter
Invalild comnand. Line +rom Lty ansactl on .
file 1gnored. s
Eiils
~J
FROCEDURE Read _1n_permanent _+1leg
A
BeEGIN
RESET (Fermtile)
Fead data _line (Fermfile,:
WHILE NUT BEUF (Fermfile) DO
BEOGIN
Aod students
Reao_dabtae_line (Fermérls:g
END:
CLOCE Jermfiic,:
ENL 2
FROCELUNWE deve permancib_tile,
i
G F i1l

BEOIN
FewhI i, tFermry le: s
4 ss Firsus
Fos= Farst e L3
WHILE - Wi Do
[RERUR
WRITELI Formeyie. Lo ztucert s,

. . W e R

- - Lt * Lot ‘-:"'."‘. ".."-‘~'

- s . R Lo . S e e T e T L T et
PRI ORI - PSR RS I i NSNS INPI A SN i W N g R S N PR Y R SV

(2

——

PO

Yy

- -
"

i

-

T

a

1= F JhNen s
END s
CLOZE (rermviler;
EiNDy
ey
0
e
L2
BEGIN
NEW (First);
First Jihest 3= MNllg
REWRKITe (Framter) g
Reaa _1n_permanent _file;
REZET (Transtile):
Read _agats_line (dranstilers
WHTLE NZT E0F (drans=+1ie) DU
BESIN
Cr&t. Commar.d Ui
i : Ado stuaecys
D Drop _etucernt s
"I 2 Inguires
.o Listg
N
IF NUI {(Command 1M L . o . I . v
THEIN Error s
head _data line 'tiranstiler;
=D
Save permanent {iles
Sraip_lines viog
Whiloold trrancer, francaction tile comprieton. 3
CLOSE (Transfrliens
CLO%E (FranvLer g
o DG RNUT adter thie lirne *% JASSHGRAF, Rlidds Ul o s HEWRITE F 23 Sl s
TNl -

LI N PP e PR, PU PP . P

cr

B A R B & et et dav st oes ahdt - M sid - adih pid R aS A at Bel i B A it el S M e Y i Mt/ i Ml S ST T e s e T

Student Transactions Problem
(In-Line)

Prediabveslhy ClieEoaasi cfFelmiale@, Transiaie, Frinter sy tdOobugts o i s i T 0 ey

‘.
.-
w2
<
VOEo©
Name &rFrav = éli Clorimries (300300 Wb CHeimg
SLo@irtvan = Fialb ED ARG Ll..iwd OF CHARg
il = O otesc g
<o
CLyect = RELLHD
Ne L 3 Lind g
Diuvdent _name 1 Newne arre. :
Suclal _secutrlity ¢ 35 _Aarrav;
N g
-
-
T
P o leaniy o Do NG o @iter thie dline o
Fermt+iie @ TkaTs
Trarn=+1lie 1 TExTa
Friover 3 TEAT;
Commeaaic = Chirsivg
Name 3 Name arravs
SO _Dwhber @ 08 arfavs
Column ¢ INITEDER:
Faret,s Tewmp., Fry U cand g
Founa 5 BodwomiNg
Clv o3 LHeFG
L

BCCIn
NEw First):
First JNe it := iNliL;s
REWRITE «Franter . ;
RESET «Fermyaile::
RErmD (Fermfiie, Comnmand):
FOR Coiuwnn := 2 TiJ Ze DU

BEWLIii

REMi2 Fermeile,. ChHioe
Mame LLoiwmn — 13 1+

t.rdl s
LGaumin B ST ST U
L.

Feri (Ferarile. wivig

U

25 maaar Leoswme = Ded 1 L
i.;«v’; H
R CURTHINN PR QYT U
Wee ol O b vrer i b ae OO
o
IF FPirzt Llie .t — NIL Gext,
| Y SR
Farm o Teg 0 g
=] TR Y o L SIS S S VI (T Vb
Vemo odactval Jseaar it 55 20 noumihere

femn Wiy L= Farsl JHe. b

RV =R R SIS A A =T1{Teir

' “ AR f . -~

. [T N - N - R -~ :
R LT T T P NES A
TR T D TS T ST S, T ¥, T S S U A I I, U, Uy, Y *...J

woe= f
- 2= F

Fownd 1= FhALDe:s

wHlolE o Nae o rnd, A NDT Found) D
[F W JBhuoent_rname = Namesr ~ND
v W S0Ciel _security = 85 _riuaebier
THe b Fownd 1= TRUE
EL ok
CEGIN
G 1= Fy
Froa= [~ JNe:ts
[N
IF Foundg THEN
ST NEH N
WhiTelli (Frrainter 'y
WHITELN ‘Frinter ,
- ‘Duplicete record: Not wmudded)

. U 3= Firsti:
L o= First JiNexts
- - It Neame - F .ztudent_name Jhiid
PR BEGIN

L NEW Temp) s

v Temp .Student name 5 ddmes

Tampy ooclal _sescuwriiy 1= 593 muinber s

Temps JNe:nt = Fairet JNests
First JNe:l = Temgs:

BEGIN
WHILE (Neame oS iuoent Nevoo
alND o UNent NI DU

BEGIN
. U oe= Fyg
.' F O JNe:ntg
END3
IF Name FoooStuoent _name THEN
BEGIN
NEW (Tempo g
Temp .Student fname 1= HNaink §

L]

A

v Temn «s0c1al secur iy,
HES Sromambeer 3
Tenp et 1= PRS- A

: F
FrouiNe v 3= Tewes

‘ il
- EL S
reer .
§:- LEGIN

NEW (lempis

Tewl «obudern. hane - vl
! Temp Dwlial Serluryf T DD mhier
X Temp «Ne .t 7 0 e T
- GGt vt Tean:
’ N
LA d END: '
ENDs
¥ Ehbs
& REMD vierme 1 ler, COmmanicr g
’ FOR Columr := 2 TC Te DO
2 INAWRRY
'. FeriD (Ferawfriie, T
. Moams Lo s = 10 3= Thes

A B s e s 2/ a2 i A 2 A SIS e U B A ASe N S S i A S AN S aoe b he S iy SAe 0/ talte e ~iile Wit Sl Sl St talt 4 ""T
- hu ds D *
FErant Ll e, Ll
cert LColumn ~— Zald 1= Chvs
LN
REMDLN (Fermy L lerg
EnND s *
Ciodnt ermiiler s
RESET vlranssarlen
REML (Tranmsilie. R T P=Y o ¥ PR

Fore Column 22 207
ol

it —-y §

lrarc ile

fesme Lol ant
Ebailg

FOiv Colwm 1= 20
JEYSRR

Poel virafeztrie, O
o COstlome = Tod r= Lo
[‘
R r ey Fomta T8 1 b §
Wit i n aul o vas animsala s [0l

- [P
J 37 SN)

Crilt, Lumfiarold i

e I U I
IF Faret olNe t 7 dalt o ‘
Bl
Vv v eare 0
TEAD owT et Tt 3 fusoia g
- T P T [T - R ooz
Tedl adue U1 B oyeoat e by
| s s lemls ‘
£
oo =i
RSN
[N N -
Foi= Fairst e Us
Found 1= reacztEs
Wwrilu B or P olalan s ksl Gvans TCaTo e ‘
i . Ciranme: T laaoiie 0 elv
tELanli @l _serlurity = ooD Auinbeer
VHEDG Foundg s = TROL
Ewte
B
L == Fg ‘
R L AN O DU P
ERlg
R oo THiEN
Bibwlta
WE D Tiocie or e st g
Wh ikt Franter, . ‘
Duplicatle record: Nol rvoeuc G \

O
| S

e

Firsrn

AT iNeone ¢ R T 1= ' VPR IS TP R TR

Lo il
DTN RO T
Tem LoblUuGe i fieone t i g
T e T N N Y P TCURY I UL AR S A T (TUTSTRN
‘&E‘-l-p PR TR R I S T S P Tt
For st Jlde v oz Tevin g 4

Ewl:ﬂ

o L. T LA RN

. . SIS .
LV P P V. VST, VPR VO T T R VLY S o, P T U0 G U PR Ly

PR

Fre
* & T,

BPAG

.
s

g g

AL

ST
B oIl

Whiick (Name Fro.Stuoent _nama)

MDD U e el Ly
bLolN

U= By

Fors o ow L iNeuwts

EnNDs
IF Name
BEoIM
INEL W
| &My
Temnp

Fo.Sivdent _niame THE

.
.

CTemps)
LStudent _name

securtity

Nein

L BoClal

:= S5 _numuer
Temp .Ne<t 1= F° .he:ts
FrooNest = Temp:

END
ELEE
EEGIN

NEW (Temp) g

Temp .Student ram:s
1= Namery
Tenp .Soc1al_secwr ity
t= 8% numtier s
Tamy JHest 1= U ety
U JNe«t 1= Tempg
Eib
EriDs
Enilg
ENL S
D s
[s LEOGLN {
{1 2= Firgoig |
For= Firrso JNeoty
Fournd = FALST
witliE F Iy AN et Founas DO
1IF (F J5tudent _name = MName Ao
(F .Suciel_security = o= munber)
THE Found 1= TRULE
ELSE
BEEGIN
0 = k3
Fos= FoJNest s
EnNb
[F Foonad TiHEN
O .lMe t o e= F JhNe: t
EL3E
Bec i
Wi TECL Franter)
WRITELY (Fraimber,
stugent et 10 CiwmEsl .
D Airop J0ne. s
ENg
EMND
{ s PECEN
s = baveaes
s Flrst oive. L
Pownd 1~ Pl oy
WhIg (F Niw didl CWND T Fouane s s
IF (F o2twdent mame = Mol ed g
[N SR STIPUPTY SN S GRS o S - Y W 1 TR L
THETD Fownd o= TROb
B
Lzt
[V R
oo [TSR I
L oy L L e e e e e
- ;"_'/- VSRR e g At e T A A T TR PR W RIT U ST ST SN P 5, Py Vg . v

’LHA.':

1IF Found ThEN
REGIN
WRITELN (Frimter .,
WRITELN (Frainter, MNamo,
1 1mn the record. s
EMD
ELSE
BEGIMN
WRITELN (Framter iy
WRITELN (Frinter, Name,
1e NOT 100 trne record, g
END
ENDg
L : BEEGIN
L oe= Farast:
Foe= First JNe:st;
WIITELN (Frinter
WH1i.E F NIl DO
BEGIN
W1 TELN (Framler, B .otugcnt name,
F .Soccial _secuwrluvo g
Foos= JNe.Ls
END:
END s
Bl
IF WG (Command IWN LA, Lo I, L3 THtiv
BEGIN
WihiTeELN (Frainmter s
Wik LR tFranter
Inval1d commarniu: Line 1rcm Lranisattl o
file ranored. s
ENL;
Fowl (iranstile, Conmatd: s
FUR Colamn s = ZOT0 Ze LU
Bel il
Feml (Tramnesfile. Chios
Name LColumn - 11 1= Unhg
END 3
Fahh Ccolumn = Z7 TO 45 LG
I ERER e
REASD (Tramet1le, Liirg
S5 _number L(loiumn - 251 1~ Cing
ENL g
FEmDLN (franefaled;
ENDs
CLltie vdranstiller:
REWHITE Wermfrle);
C 3= Firstg
o= Frirsi JHe. o
Witicv.€ ¢t fHie Lo
Bto iy
W JTelid wrerimrile, R S T FRINE S SPCTTIT RN
Coeddnlles Gesuritysg
I T S
Poos T b LiNe L
bl g
Coldot rermtile: s
WRITELH (Franuer g
WhiiBEwli «(Frinter, Tranzacticn t1lic COmpleted. :
Cuwnal Frinter .
o Do NUY waler thae fanme s DHL S ToNGT, Fllsoo gt wi s
gnibs.
B s s - - At 44_._¢'> - - a” L;!_"k'l—' q'-_‘;ﬂ_ A-.)_- \-.L _&J [P, SRV - W, S, S

;e N A’;"..‘ BREAD -!.
K, LI Y TS, Sl YO8, AT

hedh ‘SRl M A N i N YA S A A A R A L R S S

Student Transactions Problem
(Object=Oriented)

FROGREm Lioszizet Feramfrla, Transriie, Franter: dacbagl filrnesioes s S0

TN AN A
"

5
“o
TyFE
Neme type = ok ED ARRAY 1. 753 OF Cidrsfos
EC tvpe = FeibED ARRmy (1. .10 OF CHARS
3 s
£ N
0
-
Vb
For TEaTs { Do HNul alter this line
Name @ Nane tvpes
PY % number 1 &5 tvpes
Cooiwinn ot INTEGER:
Frinter ¢« Teals
-
PN
!
o
-
[l
<
L rr ANy Lliee ol 187 OGLJtll PR ERRRRIEF AL PR E TP PP RRP I RIS Do .
v
. .
{ - .
;.: o

@ TyHE

Link - (Cells

"3

Ceid = RELORD

Nest 3 Lang g ’
student _rmame 3 Name t.pae;
® Sworlal _securit, ¢ S3 t,pes
ENDg
H
Veabe LaTrmliced
[
First, O. F 3 L1nbg
e
. 4
v 3
.
- s
FRODEDURE Soarch oGk Foona 3 BOOLE R oo Uy 5 2 Lamib g
<l
BHEOC I
Oor - o ua
¥ 4 Foe= [4rst JNeouy

Foond sz Feesbo

WHlie F fTelier &Ml vhie i Frowaa. DG

I 07 LStudent name = fvame s AND
b LSotred _secoraity = T onumuer
THEN Fouond s = TINUE
' J ELSE

BiL o i

f_\ i

v

LA A Sok iut g il ARt el Mk ol Sl i NN S Rral it el Al snd Seb Al Al sl ng Sl NS 7_‘7,‘*:.."(“4'7'v~1~v~:-1-u-lw-a-----T
FrocEDUhe wilzi__Imsteasdlicze liet:
BES N
NLW (First) g
Firs SHNest 1= Nl
ENDs

o
y
FROCEDWHE L1s) _Wdo students
o3
TN
Puplicats @ Bduicmemibdg
L I e T
FROLEDURE lrger t _atter (wtter thae @ Lainbk)i
VA
ltemp ¢ Laro s
EtwlnN
NEW «Temps s
Temp .Student_name 3= Names
Teemp .50cial securihby 1= 35 numbeairg
Temp Next 1= After _this JNetg
Atter this JNe.t 3= Teups
END 3
<
FURWCTION Empty_list 3 BOCOLESANS
ey
BEGIN
ik Faret et o= Nl
THEW Emzt s _1212n 1= TRuE
ELst Empry list = Froiny
ENDs

iid
If Empty_list THEN
Insert_atter (Firgt)
cloc
BEGIi
Search (Duplicate, X, Y):
I¥ Duplicate THEN
Writeln (Franter, Duplicate record: Notl ARdceo
ELSE
BEGIN
o= Farsts
Froe= Furet JNets
[v Meome Foottudrmrin neds e
Linsert_atrcer (First:
ELSE
BEG LN

bPEL

Willie (Name oL Etodent name s el
IS A FTESNR vl DU
Etwl
(I O

b
IR

v Ivame Pz LSl Dieale:

= U oidenit

Tkl [hzert _atuer Fo

Cwni. inger bt oaftaar

PR
Coida e
e

Et‘u. .

. - - . - *w P A . et - - . - - - . . . - . -
s - A TP A e | - - ., - . L. . <. . P
g e, S e W =T o FEAC R TR RSN - T . B LT . N R, L R j
. o e L) PR o, - R o T, . s e R . e .
P T N P Y P TR U TN TN T U O o, T T TR S PRI S ST St TSl . P L S PG r P o anthiad A et ty e a o

-

e, TPy e N o are i Sn ‘uans. aan Boladant et ied g aad Al Bl 2 At ok -0 Sbe At are Aied TN -"’
i o
<l
.
)
el
FholorbrE LIST__brop_students
VR
Freceeding, Aclual ¢ Lines
[s_1t_there 1 bOOLEIN:
EBEL iy
Cearch yls_ 1t there, Freceeding. Actual s
iF Is 1t there ThEN
Freceeding .ie .t 1= Actual .Het
Lok
Writeln Frainter,
‘Stuoent net 10 Cle=w: e drope donn. s
Eiviss
.
Ll
Fidlebuhi CI8T lnguar ey
s
Vi
X e v 3 Liiir s
Fow.d @ Boockriug
IR SRS
Serer S AR OUTG L, K, Yoy
IF Fowng TR
Wrateln 7 inter W e, le 10 o iamt.
ELaE
wrateldn (Franter, y Teaamer 1e NCT am list. s
[S
.
O
FROCEDWAE LILT _List «ll studernisy
BEwiid
O 1= Firsty
For= First .Ne.u;
Wi stedln (Frarmtes) g
wiHliLE # NiL Du
Etolid
Wratelrn (Frairmter, s T St LUEn L Meahe .
R TP N P RY S I IE
(R N R N I
[P
CRRVE
T ELUe D LIS _we tl_tel ©r Liasl Cded Gt S 0. 1 BObEree - 3
Eoiid
ol T b ar ot
Fos= First Jive .ty
Ir F = NIL
THEN Nout _empt . = Foan.T
ELobE ot emnt . Tt
Eiuls
S St e e L I AT I L N POV VU RPE E PY v Y T PN\

FROCEDURE LIST_ Get _nest_studeni VWAl Not empt . @ bBOLCe AR 3

Lol

tuacaint e 3

4]

Neune: §3= .
A5_nuwiber = F .ScCilal _securllys
1= P . Nent:

IF P = NIL

THEM Not_empty LRSI
ELSE Nobt_empty = TRUE;

Et‘ui\‘:

e W

(¥

RREARARRRARE R P AR ARERAFARARAARRARAARARARRFI P I RARRPI PRI RREP P RRRNS P 0w o

LT R B A A

e

L Ferrexrr e oz actlon flle CEUECT #5222t av e ke s s b st s srnr s i,

.o
.3
VAR LSTRTEICT
Trane+ile ¢ Teal;
caommaind 1 CHeiRg
l.
N
Frocebdine TRENSFILE __Frocesz_trans +1les
Ol
Vwie fAaded, Dropped, Founo @0 BOULEmMNG
(.J
FERACELURE Read _uata line:
. o
A Wi
Cho¢ CHidig
Column ¢ INTEGER:
!
BEGIN
RESDL YTranefile, Lommandi g
FOR Columr 3= 2 T3 & DO
BEOIN
REWE (Transtile. Chiog
Name LColwuwmn - 11 = Cng
-7 Eiils
L FOR Clswmr, 3= 27 TU 45 Do
. TESIN
b Ferl «Trancsfile, Ciog
< 35 nwmiser CZolwmn - Tod 5= Cieg
- etalsg
PEyvDLN (Trancc1ley
EinD s \
p

!
PESET Trarnist s ie s
lFead_aata lines;
Whaoe NOV Eur (Trano+yr.er LO
EESIN
CRZE Commarg G

A LIBT_ wds slugen s

D s LISY _Dreoy stiwernig

T LIET D Inguires

Lo LTET. Lset @il zmrodon s g
Filils

‘. ir

(R TR [T TPRTNIN R O L R G SR 1y i | L J
THEN Writein (Frinter,
Invalild commerd: linmc 14rniorei.
Raad cate_line;
ENDs
END s
. r
-
.
o
:J
L R R R R R R AR R R R AR AR R AR LR R R AR RN TP RARPNIR DR PIRPIRADERR ISR AR AR RET R
N
H

APRRERRRAN fFermanent

FoEs PPy r

B

R

~

(ST

P ILE OLaECT R EREREPRA R RERDRRPRP RS RN

Fermillie @ TEXT s

:1“5;. ROV FEFMFLLE . fexo_in_perm_f1]es
3 .
P <o
g PP locbwb i heed perm File lines
. L
Vb
o Ll ot CHefg
= Colwmne 2 INTEGERS
. }
o ELG D
= REml (Fermiille, Chig
5 FOR Column := o 70 T6 DO
‘ 9 EBEGIN
READ Fermtile, Cihog

' Name [Lolumn — (1 := Ch;
A ENDs

- FUN Column 1= 27 TO 4% Du
- EEGIN

. RewmD (Fermfale, Chog
!" D95 _nunicer (Column - Z&3 2= Ohg

ENDs

R FEmieid (Fermirle

- LD

-

N Boeolli

PESL D rFer mtlie r g

) Fozss _per _tide o0sd

. WHT, B NOT 00 arermtller Lo

. SR O

- Lici red oz wderity

lb o Fleeed B3 m tile (1nes

[4L'=
Ul vrerme e g
[AFIVH

[RTZI RS LU (R N S

More left 3 BUULEWN:
Student _name : Name ty
Social _security @ 5% t

'

e
yRE

BEGIN
REWRITE (Fermtile)s
LIS __Go_to_top_ot_list (More_lettc
WHILE More_le+t DO
BEGIN
LIST_ et neut_student (More lett):
WRITELN (Fermti1le, ' ', MName,

S5 nnbier 0 g

Elil;
CLUSE Fermyailesy
EiND:

LA
TR N

~ e
.
iy

[

RPRRP A PFRAREE AR ARR P AR RS ERRAD AR ERRPRR PP IR R PRI RPEAIRER AR RN RS

Y EY PN ey ey e
[V

[ial
[LA

i

eV IR Graniter g

LIzl __Imitarlizce_liety .
FEnIE ILE _fRead_1n_perm_+t1le:s

TReiSHF1ICE | Frocess_trains firleg

FEri {it | smave NeEw fperm 3]s

W teln Frinter g

Wit steln (Franter, ‘Jransactian t1ile compietea. 3

« = Do NUT alter this line =+ JASSIGHNF, ARulh.Si) s REWF ITE W 3 CLU3E 7 g ‘

ehNb.

) o - - - L e, .
. . e e e . . i) e R R L
A R A) . S - R P _"J- A
e BT e . ; ST . - o A I
D PP I PSPPI Rl S B S I S SO P, » PP PP i S i R T U o g POy

(€]

[J

»

L

. P .) - 5 -
Caln it ol Ao R Bl

F-' - T > Y a— i L e A e it it i

P T P
.'~-"f\.« e

Ll ral e saN

.

Pula maan Sat s it et

APPENDIX B

PROGRAM OVERVIEWS

R E

‘4"_- . :-',

-

s, e
»

-
LY

L At vt p R I I AP . o
TR AR P S SN

| pen are ae pom g e o 410 o fon S g Bra ga s ol kAl SO S S Sl i N

WYwW L wLITEIUWWYWER "y T T TR e TR TS Y s e "-T

PROGRAM OVERVIEW
Host-At-Sea Buoy Problem
Functional Decomposition - Simple

REQUIREMENTS

This program was designed to simulate a real-time system. It
concerns a bouy which provides navigation and weather data to air and
ship traffic at sea. It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an SOS. It will broadcast this SOS every 10 seconds until it is
turned off by a separate request. Each bouy has a small computer, 2
tenperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
transmissions. To maintain accurate information, readings are taken
from the sensing devices at fixed intervals: wind sensors = every 30
secs.; Omega (i.e, location) = every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). Each sensor reading returns an integer
value, Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity.,

DESIGN

This program was broken up into 8 modules. The main process of
the program reads in the measurements taken from the five gauges,
processes requests received through the receiver and subsequently
directs the data to be broadcast by the transmitter., Five of the
modules are the processes that take measurements from these gauges.
The other two modules are the receiver and the transmitter modules.

MODIFICATION

It has been determined that your wind speed guage is inaccurate.
Each time you are asked for the wind speed, read the wind speed guage
twice in a row and average the two readings to obtain your reading.

b d

. . . -

T S e e T e Lt s . .o PN . . RERFRL I w e e . et T e e e W e
PRV R TN W T Y TR SR T 10 S St G ST WY S W S T Y el ST W W, O AP AT . PSRRI Ll-‘w

PROGRAM OVERVIEW
Host-At-Sea Buoy Problem
Functional Decomposition - Complex

- REQUIREMENTS

oo This program was designed to simulate a real-time system. It
concerns a bouy which provides navigation and weather data to air and
\ ship traffic at sea. It collects wind, temperature, and location

5 data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.

Additionally, in the case of an emergency, it may be told to broadcast

e an SOS. It will broadcast this SOS every 10 seconds until it is
o turned off by a separate request. Each bouy has a small computer, 2

¢ temperature sensors (each one at a different depth), wind direction

and speed gauges, a location detector, as well as a receiver and a

transmitter, Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic

[transmissions. To maintain accurate information, readings are taken

'R from the sensing devices at fixed intervals: wind sensors = every 30

‘*-1 secs.; Qmega (i.e. location) = every 10 secs; and temperatures = every
- 10 secs., (5 readings are taken and averaged so to get an accurate
L determination at each depth). Each sensor reading returns an integer
S value. Also, the baud rate of data transmission varies depending on
s whether a ship or plane request was received, due to the time limits
e of the craft in the vicinity.
L
SO DESIGN

- This program was broken up into 8 modules. The main process of
- the program reads in the measurements taken from the five gauges,
processes requests received through the receiver and subsequently
directs the data to be broadcast by the transmitter. Five of the
b~ modules are the processes that take measurements from these gauges.
[The other two modules are the receiver and the transmitter modules.

::,1'_‘: MODIFICATION

| & | ;
WS If the temperature and wind speed guages have some sort of error
.:f'.-j (mechanical, electrical), the circuitry associated with it will return
b the integer 999, 1If the temperature guage returns 999, you should pot
-I:--I count that figure into the average for that averaged reading. (In
b other words, do not add 999 to the accumulator, and subtract 1 from #_
." i TO_AVG.) If the wind speed guage returns 999, continue reading the
= £ guage until you get a reading other than 999.

-

N

lad A il . had ed : & "-'—‘“1,
W e W W T T T T T o T e s Aot et adh gt al il Sl Sulh el A/ RaS Rt Aai SR R AaB g Sl el 2 A f Aol Il Rl Sl et Yl

'. PROGRAM OVERVIEW
Host-At—-Sea Buoy Problem
In-Line - Simple

REQUIREMENTS

: This program was designed to simulate a real-time system. It
© concerns a bouy which provides navigation and weather data to air and
: ship traffic at sea. It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
- an S0S. It will broadcast this SOS every 10 seconds until it is
@ turmned off by a separate request. Each bouy has a small computer, 2
temperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
. transmissions. To maintain accurate information, readings are taken
e from the sensing devices at fixed intervals: wind sensors = every 30
secs.; Omega (i.e. location) = every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). Each sensor reading returns an integer
value. Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity,

DESIGN
All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,

o however, in that it does not contain "GOTO's", but rather controls
flow by the use of "while," "repeat... until," "do" loops, etc.

MCDIFICATION

.'e, It has been determined that your wind speed guage is inaccurate.
Each time you are asked for the wind speed, read the wind speed guage
twice in 3 row and average the two readings to obtain your reading.

P e T U I R R T LRI TR S PV S LS R
ot et W n Calon Cas f‘n.:xMutA_x.nA.'\;: e b T A Sea b A Ped A-"LIKI-AIAJ FVEY G0 000 WU WU WU e U gy Y S PR - Uy

Ll b bl g
+

T
]
e

e (]
. s
0 SR

MDD
Iy

.
“J Il ’. r

ANy

L A A o

S.as.at e latalla

PROGRAM OVERVIEW
Host-At-Sea Buoy Problem
In—Line - Complex

REQUIREMENTS

This program was designed to simulate a real-time system. It
concerns a bouy which provides navigation and weather data to air and
ship traffic at sea., It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an S0S. It will broadcast this SOS every 10 seconds until it is
turned off by a separate request. Each bouy has a small computer, 2
temperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
transmissions. To maintain accurate information, readings are taken
from the sensing devices at fixed intervals: wind sensors = every 30
secs.; Gmega (i.e, location) = every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). FEach sensor reading returns an integer
value. Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity.

DESIGN
All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,

however, in that it does not contain "GOTO's", but rather controls
flow by the use of "while," "repeat... until," "do" loops, etc.

MODIFICATION

If the temperature and wind speed guages have some sort of error
(mechanical, electrical), the circuitry associated with it will return
the integer 999, If the temperature guage returns 999, you should pot
count that figure into the average for that averaged reading. (In
other words, do not add 999 to the accumlator, and subtract 1 from #_
TO_AVG.) If the wind speed guage returns 999, continue reading the
guage until you get a reading other than 999,

° .‘-- . -
. LR VL O L
AlmlaVla tm"a

{ L | PROGRAM OVERVIEW

) Host-At-Sea Buoy Problem

N Object-Oriented - Simple

REQUIREMENTS

'\9 This program was designed to simulate a real-time system. It

concerns a Host-at-Sea bouy which provides navigation and weather data
to air and ship traffic at sea. It collects wind, temperature, and
location data, and transmits summaries every 60 seconds, or more
detailed information whenever requested by a passing plane or ship.

y Additionally, in the case of an emergency, it may be told to broadcast

: an SOS signal every ten seconds; (a separate request will terminate

. it) . Each bouy has a small computer, 2 temperature sensors (each one

- at a different depth), wind direction and speed gauges, a location
detector, as well as a receiver and a transmitter. Sending an SOS is
considered of highest priority, then air and ship requests,
respectively, and lastly, the periodic transmissions. To maintain

accurate information, readings are taken from the sensing devices at

P € fixed intervals: wind sensors = every 30 secs.; Qmega (i.e. location)

= every 10 secs; and temperatures = every 10 secs., (5 readings are

taken and averaged so to get an accurate determination at each

- depth). Each sensor reading returns an integer value. Also, the baud

. rate of data transmission varies depending on whether ship or plane
request due to time limits of the craft in the vicinity.

DESIGN

This program was broken down into six main sections. The first is
GUAGES, which contains all the sensor functions which will read the
gauges so measurements can be taken. Second is MEMORY, in which all
q of the data taken from the gauges that will be later broadcast is
. stored. RECEIVER accepts current requests for data from passing
o planes or ships. The TRANSMITTER sends data periodically to any
. vessel which may be nearby, and sends detailed data or an "SOS"

- signal, when requested to do so. The fifth section of the program,
CLOCK, simulates the passage of time so that the appropriate readings
' may be taken at the proper intervals. Finally, the MAIN PROCESS
controls each of the other sections, beginning them, processing the
information which is accummulated in them, processing requests, and
directing the transmission of the data stored.

" MODIFICATION
j: It has been determined that your wind speed guage is inaccurate,

. Each time you are asked for the wind speed, read the wind speed quage
5 twice in a row and average the two readings to obtain your reading.

s PROGRAM OVERVIEW
} Host-At-Sea Buoy Problem
Object-Oriented - Complex

REQUIREMENTS

This program was designed to simulate a real-time system., It

- concerns a Host-at-Sea bouy which provides navigation and weather data
3 J to air and ship traffic at sea. It collects wind, temperature, and
location data, and transmits summaries every 60 seconds, or more
Sy detailed information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
L an SOS signal every ten seconds; (a separate request will terminate
it) . Each bouy has a small computer, 2 temperature sensors (each one
i at a different depth), wind direction and speed gauges, a location
AN detector, as well as a receiver and a transmitter. Sending an SOS is
B considered of highest priority, then air and ship requests,
- respectively, and lastly, the periodic transmissions. To maintain
s accurate information, readings are taken from the sensing devices at
fixed intervals: wind sensors = every 30 secs.; Omega (i.e. location)
"‘.“ = every 10 secs; and temperatures = every 10 secs., (5 readings are
e taken and averaged so to get an accurate determination at each
- depth). Each sensor reading returns an integer value. Also, the baud
rate of data transmission varies depending on whether ship or plane
request due to time limits of the craft in the vicinity.

DESIGN

This program was broken down into six main sections. The first is
e GUAGES, which contains all the sensor functions which will read the
P gauges so measurements can be taken. Second is MEMORY, in which all
of the data taken from the gauges that will be later broadcast is
@) stored., RECEIVER accepts current requests for data from passing
- planes or ships. The TRANSMITTER sends data periodically to any
vessel which may be nearby, and sends detailed data or an "SOS"
s signal, when requested to do so. The fifth section of the program,
CIOCK, simulates the passage of time so that the appropriate readings
may be taken at the proper intervals. Finally, the MAIN PROCESS
Py controls each of the other sections, beginning them, processing the
information which is accummulated in them, processing requests, and
directing the transmission of the data stored.

< MODIFICATION
.‘ If the temperature and wind speed guages have some sort of error
O (mechanical, electrical), the circuitry associated with it will return
el the integer 999, If the temperature guage returns 999, you should pot
¥ I count that figure into the average for that averaged reading. (In
‘e other words, do not add 999 to the accumulator, and subtract 1 from &_
-1 TO_AVG.) If the wind speed guage returns 999, continue reading the
on guage until you get a reading other than 999.

LA e e e gue g =2 s Bl

ik gl e 2 . e

L an e g o0

Ma JEA g Aus s am ant am g

PROGRAM OVERVIEW
Military Address Problem
Functional Decomposition - Simple

REQUIREMENTS

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line 1]Title Given Names Last Name [2]Branch
or Code [3)Commmand or Activity [4]City, State or Province
{5]1Country Postal Code.

DESIGN OVERVIEW
This program was broken down into 2 primary modules. The first is
the data file which contains the records to be examined. The other is
the main process which examines the data for matches to the input
criteria specified by the user on the terminal.
MODIFTCATION
The mailing label currently does not print the street address.
The labels should be changed so that the street address appears as the
forth line of the label.

EXAMPLE :

Lt. George Smith

Air Force

Bolling

1234 wWest Street <— this is the new line added
Washington, D.C.

22303

ol e o a gms

>l ifima

—d

m_'h' "‘i-'_ . Y_'Y'-"i‘ - . L 7_' '_'-_"v:""-l‘ - ‘b_ T. ~ e > I-"_‘""' L2 A ‘(_“Y 77"7"7_‘7_“(‘? kY
N
-
s
i |
PROGRAM OVERVIEW <
- Military Address Problem
- Functional Decomposition - Complex

REQUIREMENTS

This program is designed to search for and print the addresses within 4
a certain Postal code area, and/or to do the same for the addresses with-
in a certain O-Grade, (the numerical representation of an officer's
rank.) It also keeps a running total of the number of labels printed out
for each zip code and a breakdown of the number sent to each rank within
that zip code. In the database, addresses follow one after the other,
each in a separate record, and can be read in as records. The records are i
sorted by zip code, and, within zip, by grade. Each address consists of
11 fields, each field on one line, which follow sequentially, in the
following order: Title, Last Name, Given Names, Branch or Code, Command or
Activity, Street or P.O.Box, City, State or Provinvce, Country, Postal
code, O-Grade. The output format for labels is: [line 1]Title Given
Names Last Name [2]Branch or Code [3]Commmand or Activity [4]City, State
or Province [5]Country Postal Code. L

DESIGN OVERVIEW

This program was broken down into 2 primary modules. The first is the
data file which contains the records to be examined. The other is the |
main process which examines the data for matches to the input criteria
specified by the user on the terminal,

MODIFICATION

The name line currently prints the person's title, given names, and
last name (e.g., Lt. Alan C. Schultz). A new data field (a 12th field) is
now in the data base, but the program neither recognizes nor uses this ‘
information. This field is a Boolean that represents whether or not the i
person is retired., This field should be incorporated into the program so
that this field can be added to the name line as the first item to be
printed. With this modification, the output would be as follows: 1

Column: 1234567890123456789012345678901234567890
If Retired:
Retired Lt. Alan C. Schultz
If Not Retired:
Lt. Alan C, Schultz 4

v

Ldlain gl Sl _mag shadh 4

@ ni Jiadh Sadh Sl adh Mh AU S A AL It e B A N e g T TR T W M T e T TR TR T e T T T T o g Vgt W, WaN N

PROGRAM OVERVIEW
Military Address Problem
In-Line - Simple

REQUIREMENTS

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with~ in a certain O-Grade, (the numerical representation of
an officer's rank.,) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0.Box,
City, State or Provinvce, Country, Postal code, O~Grade. The output
format for labels is: [line 1]Title Given Names Last Name [2]Branch
or Code [3]Commmand or Activity [4]City, State or Province
[S]1Country Postal Code.

DESIGN OVERVIEW

This program was written entirely with in-line code such that all
code is included in the main program. There are no modules,
procedures or functions, although it is structured in that it does not
use "goto's", but rather controls flow by the use of "while,"
"repeat.,.until,™ "do" loops, etc.

MODIFICATION

The mailing label currently does not print the street address.
The labels should be changed so that the street address appears as the
forth line of the label.

EXAMPLE:

Lt. George Smith

Air Force

Bolling

1234 West Street <— this is the new line added
Washington, D.C.

22303

...........
- < - - e e e P R A S S SR S L A N U
PRI R R A P I IR e S P TR e >

P PR ST e - Fel ...
SIS S S S SR St NN STt S S S TSR S S A I R S,

- . TRy B ar A el At A 46 A AN A A A R e A) |

T
1
Y
5
9
l’
.
K
R
P
4
<

L
ll

- v oy
qu P
» RPN " .,
5 IR

B

PRl A A

I

PROGRAM OVERVIEW
Military Address Problem
In-Line - Complex

roe

REQUIREMENT'S

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. 1In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line 1]Title Given Names Last Name [2]Branch
or Code [3]Commmand or Activity [4]City, State or Province
[5]1Country Postal Code.

DESIGN OVERVIEW

This program was written entirely with in-line code such that all
code is included in the main program. There are no modules,
procedures or functions, although it is structured in that it does not
use "goto's", but rather controls flow by the use of "while,"
"repeat.,.until," "do"™ loops, etc.

MODIFICATION

The name line currently prints the person's title, given names,
and last name (e.g., Lt. Alan C. Schultz). A new data field (a 12th
field) is now in the data base, but the program neither recognizes nor
uses this information., This field is a Boolean that represents
whether or not the person is retired. This field should be
incorporated into the program so that this field can be added to the ‘
name line as the first item to be printed. With this modification,
the output would be as follows: \

Colum: 1234567890123456789012345678901234567890
If Retired: |
Retired Lt. Alan C. Schultz ;
If Not Retired:
Lt. Alan C. Schultz

A o
I"

TV T Y YT
. ’l .l "
‘. .

.""‘
v,)

A ol
‘-..'- ,'- ';- _" ..
RN
[]

A
{I
A

A and I Bl Bl J® e g Pods " i A ek st aid SMEL coL W C Aadh Madr e Sndh Aad Al St NSl At te SabAte i e O 4 A A 0 Aot el i e e

' @

4

)

f

p

E

| @ PROGRAM OVERVIEW

4 Military Address Problem
{ Object-Oriented - Simple
b

{ REQUIREMENTS

!

® This program is designed to search for and print the addresses

within a certain Postal code area, and/or to do the same for the

! addresses with- in a certain O-Grade, (the numerical representation of

i an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses

PY follow one after the other, each in a separate record, and can be read

: in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0O.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
) format for labels is: [line 1]Title Given Names Last Name [2]Branch

- or Code [3]Commmand or Activity [4]City, State or Province

{5]1Country Postal Code.

DESIGN OVERVIEW

) This program was broken down into three main sections: the file

object, which contains the records to be examined; the label object,

which formats the information to be printed on the labels; and the

main process, which controls all operations on these objects,)
temporarily stores and passes information, and reads input from the ;
terminal

MODIFICATION
f The mailing label currently does not print the street address.

] The labels should be changed so that the street address appears as the
f forth line of the label.

AL

EXAMPLE:

Lt. George Smith
Air Force
Bolling
Py 1234 West Street <— this is the new line added
Washington, D.C.
22303

PR PPV U T S

PEPE W W W I T R R

PROGRAM OVERVIEW
Military Address Problem
Object-Oriented - Complex

REQUIREMENT'S

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with—- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line 1]Title Given Names Last Name [2]Branch
or Code [3]Commmand or Activity [4]City, State or Province
[S)Country Postal Code.

DESIGN OVERVIEW

This program was broken down into three main sections: the file
object, which contains the records to be examined; the label object,
which formats the information to be printed on the labels; and the
main process, which controls all operations on these objects,
temporarily stores and passes information, and reads input from the
terminal

MODIFICATION

The name line currently prints the person's title, given names,
and last name (e.g., Lt. Alan C, Schultz). A new data field (a 12th
field) is now in the data base, but the program neither recognizes nor
uses this information. This field is a Boolean that represents
whether or not the person is retired., This field should be
incorporated into the program so that this field can be added to the
name line as the first item to be printed. With this modification,
the output would be as follows:

Column: 1234567890123456789012345678901234567890
If Retired:
Retired Lt. Alan C. Schultz
If Not Retired:
Lt., Alan C. Schultz

) e .7

. N o v e .o
"‘. Bl DN % Lottt
N > .'ll l.l) ll'. - LY l" " .

. .
PR
e -

-«

PALAPRPS

‘
A DAD

'y
Rl '.u 'n.
MRS T2

l-l.l

b e o ot B duie e T Tl Thikiing
o . . v e e et a s
VANIEANY

NI W N

»

R 7 F AT . L
[RPURPIR APPSR B S IS RSV S B S B P I

R N L T R R U T T TR L T MRl A b e i A A gin ot A e utas ahcale YT Y w'.-"‘q

el Bl Bl Sl "l Rt Bl P Badh Mhd

I lc'\"‘__ L BN A Seu i e i ol e A S ARl fi B Y Y e A Lo ' el fadc i S N~ Sl i

e I B S B S S T —-]

RRERE SO
‘.

PROGRAM OVERVIEW
Student Transactions Problem
Functional Decomposition - Simple

REQUIREMENTS

RO " 2
e

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the permanent
file) the name and social security number of each student enrolled (in
alphabetical order). Each day a transaction file is created which
contains a command followed by, when needed, the student's name and social
security number, The commands are: ‘A' = add a student in the proper
alphabetic location, ‘D' = drop a student, ‘I' = inquire about whether a
student is enrolled, and ‘L' = list all students. ‘A', ‘D', and ‘I'
require a student name and social security number; ‘L' does not. The
format of the permanent file is: [column 1] blank, [colum 2-36] name,
[column 37-45] social security number. The format of the transaction file
is: [colum 1] command, [column 2-36] name, [column 37-45] social security
nunber. In each case, the social security number is written without
spaces or hyphens. The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file
and modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN

This program was broken down into three primary modules. The first is
the permanent file which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file, which consists of all requests of or alteration to the
list which need to be done. The third module, the main process, actually

performs the operations.,

MODIFICATION

The following should be added to the output. When doing the ‘L'
command, count the number of students, and after all the student names
have been printed, print the total number of students using the following

format:

Colum 123456789012345678901234567890
Last name in list
Total students: *

* indicates that the integer value associated with this total should be
printed starting in this colum.

o' 4e v e s oy a0 s s aedh sl o ABSaAam. cal e g ~aas ana dte SAa-gte Ste Ste 2\e B A AV BS ot Aeh Beh fesh et Aok e ol Sat Gav ARS A" o r...‘,._V'._.‘__,_V_,..;._.-H,_._‘___T

9
»
9
LF ﬂ
b PROGRAM OVERVIEW

Student Transactions Problem
Functional Decomposition - Complex

REQUIREMENTS

This program is designed to update the registrar's listings for ?
students at a university. The registrar has on disk (called the permanent
file) the name and social security number of each student enrolled (in
alphabetical order). Each day a transaction file is created which
contains a command followed by, when needed, the student's name and social
security number. The commands are: ‘A' = add a student in the proper
alphabetic location, ‘D' = drop a student, ‘I' = inquire about whether a ?
student is enrolled, and ‘L' = list all students. ‘A‘', ‘D', and ‘I‘
require a student name and social security number; ‘L' does not. The
format of the permanent file is: [colum 1] blank, [column 2-36] name,
[colum 37-45] social security number. The format of the transaction file
is: [colum 1] command, [column 2-36] name, [colum 37-45] social security
number. In each case, the social security number is written without
spaces or hyphens, The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file
and modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file,

DESIGN q

This program was broken down into three primary modules. The first is
the permanent file which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file, which consists of all requests of or alteration to the
list which need to be done. The third module, the main process, actually q
performs the operations.,

MODIFICATION

The permanent file now contains some additional information about the
class of the student (freshman, sophomore, junior, senior, graduate). 1
This information is contained in colum 46 of each record in the permfile
as a number in character format.

Freshman
Sophomore
Junior
Senior {
Graduate. ‘

1
2
3
4
5

Change the ‘L' command so that when it prints the student list, it prints

the number representing class membership immediately following the SS

number (i.e. with no spaces between the two.) In making this

modification, remember that the program should read in this new {
information and preserve it for use in the transactions.

Colum 12345678901234567890123456789012345678901234567890

example:
Anderson, Harry 009981123} {

This is the number repre-
senting class membership

-I‘. 4‘$v IR Y i
. e
L PRESINERS SRR

J— - _— A AP el
T o W T W e N A T T AR T T T T A Palich

PROGRAM OVERVIEW
® Student Transactions Problem
In-Line - Simple

b
| REQUIREMENTS
i
i

This program is designed to update the registrar's listings for

students at a university. The registrar has on disk (called the

® permanent file) the name and social security number of each student

enrolled (in alphabetical order). Each day a transaction file is

created which contains a command followed by, when needed, the

student's name and social security number. The commands are: ‘A' =

add a student in the proper alphabetic location, ‘D' = drop a student,

*I' = inquire about whether a student is enrolled, and ‘L' = list all

® students. ‘A', ‘D', and 'I' require a student name and social
security number; ‘L' does not. The format of the permanent file is:
[colum 1] blank, [colum 2-36] name, [colum 37-45] social security
number. The format of the transaction file is: [column 1] command,
[colum 2-36] name, [colum 37-45] social security number. In each
case, the social security number is written without spaces or

G hyphens. The program reads the permanent file into a linked list in
main memory. It then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN

All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,
however, in that it does not contain "GOTO's", but rather controls
flow by the use of "while," "repeat... until," "do" loops, etc.

MODIFICATION

The following should be added to the output. When doing the ‘L'
command, count the number of students, and after all the student names
have been printed, print the total number of students using the

'™ following format:

Column 123456789012345678901234567890
Last name in list
Total students: *

.j’i.
A
N
]
_\
j
.‘
]

v -

* indicates that the integer value associated with this total should
be printed starting in this colum.

Pl R OV R

T a e et ety p e Lt St 2t 2ol S A Y RS M M e S ‘AR AN AR R SRA AN BbA

PROGRAM OVERVIEW
Student Transactions Problem
In-Line - Complex

REQUIREMENTS

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the permanent
file) the name and social security number of each student enrolled (in
alphabetical order). Each day a transaction file is created which
contains a command followed by, when needed, the student's name and social
security number. The commands are: ‘A' = add a student in the proper
alphabetic location, ‘D' = drop a student, ‘I' = inquire about whether a
student is enrolled, and ‘L' = list all students. °'A', ‘D', and ‘I'
require a student name and social security number; ‘L' does not. The
format of the permanent file is: [colum 1] blank, [column 2-36] name,
[column 37-45] social security number. The format of the transaction file
is: [colum 1] command, [colum 2-36] name, [column 37-45] social security
number. In each case, the social security number is written without
spaces or hyphens. The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file
and modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file,

DESIGN

All of the code in this problem is included in the main program.
There are no modules, procedures, or functions, It is structured,
however, in that it does not contain “GOTO's", but ratlier controls flow by
the use of "while," "repeat... until," "do" loops, etc.

MODIFICATION

The permanent file now contains some additional information about the
class of the student (freshman, sophomore, junior, senior, graduate).
This information is contained in column 46 of each record in the permfile
as a number in character format.

1 = Freshman
2 = Sophomore
3 = Junior
4 = Senior
5 = Graduate.

Change the ‘L' command so that when it prints the student list, it prints
the number representing class membership immediately following the SS
number (i.e. with no spaces between the two.) In making this
modification, remember that the program should read in this new
information and preserve it for use in the transactions.

Colum 12345678901234567890123456789012345678901234567890

example:
Anderson, Harry 009981123}

|

|
This is the number repre-
senting class membership

PROGRAM OVERVIEW
Student Transactions Problem
Object-Oriented - Simple

REQUIREMENTS

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the
permanent file) the name and social security number of each student
enrolled (in alphabetical order). Each day a transaction file is
created which contains a command followed by, when needed, the
student's name and social security number. The commands are: ‘A' =
add a student in the proper alphabetic location, ‘D' = drop a student,
‘I' = inquire about whether a student is enrolled, and L' = list all
students, ‘A', ‘D', and ‘I' require a student name and social
security number; ‘L' does not, The format of the permanent file is:
[colum 1] blank, [colum 2-36] name, [column 37-45] social security
number. The format of the transaction file is: [column 1] command,
[colum 2-36] name, [column 37-45] social security number. In each
case, the social security number is written without spaces or
hyphens. The program reads the permanent file into a linked list in
main memory. It then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN

This program was broken down into four main sections. The first
is the permanent file object, which contains the official list of all
students and their social security numbers (in alphabetical order).
The second is the transaction file object, which consists of all
requests of or alteration to the list which need to be done. The
third section, the linked list object, is a representation of all
students within the computer memory and which is acted upon by the
transaction file. And finally, the printer object outputs any
requested information, error messages, and a completion message once
the transaction file has been successfully processed.

MODIFICATION

The following should be added to the output. When doing the ‘L'
command, count the number of students, and after all the student names
have been printed, print the total number of students using the
following format:

Colum 123456789012345678901234567890
Last name in list
Total students: *

* indicates that the integer value associated with this total should
be printed starting in this colum.

.........

i on iall®
- r .Y

.
.' lI 'l 1
.

D

. T
.

P MY .
e R

\
% Y T
.

PROGRAM OVERVIEW
Student Transactions Problem
Object-Oriented — Complex

REQUIREMENTS

This program is designed to update the registrar's listings for students at
a university. The registrar has on disk (called the permanent file) the name
and social security number of each student enrolled (in alphabetical order).
Each day a transaction file is created which contains a command followed by,
when needed, the student's name and social security number. The commands are:
*A' = add a student in the proper alphabetic location, ‘D' = drop a student,
*I' = inquire about whether a student is enrolled, and L' = list all
students. ‘A', ‘D', and ‘I' require a student name and social security number;
‘L' does not. The format of the permanent file is: [colum 1] blank, [column
2-36] name, [colum 37-45] social security number. The format of the
transaction file is: [colum 1] command, [colum 2-36] name, [column 37-45]
social security number. In each case, the social security number is written
without spaces or hyphens. The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is finished,
the linked list is copied back to the permanent file,

DESIGN

This program was broken down into four main sections. The first is the
permanent file object, which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file object, which consists of all requests of or alteration to the
list which need to be done. The third section, the linked list object, is a
representation of all students within the computer memory and which is acted
upon by the transaction file. And finally, the printer object outputs any
requested information, error messages, and a completion message once the
transaction file has been successfully processed.

MODIFICATION

The permanent file now contains some additional information about the class
of the student (freshman, sophomore, junior, senior, graduate). This
information is contained in colum 46 of each record in the permfile as a
number in character format,

Freshman
Sophomore
Junior

Ut W N
nuwnmn

Change the ‘L' command so that when it prints the student list, it prints the
number representing class membership immediately following the SS number (i.e.
with no spaces between the two.) In making this modification, remember that
the program should read in this new information and preserve it for use in the
transactions.

Column 12345678901234567890123456789012345678901234567890

exanple:
Anderson, Harry 0099811231
This is the number representing
class membership
...... : - T et -" - i.' N -:‘ :h . : N

TECHNICAL REPORTS DISTRIBUTION LIST

-9

|]

Lttt

RSP S

¥
‘

=
M

OFFICE OF NAVAL RESEARCH

Engineering Psychology Program
TECHNICAL REPORTS DISTRIBUTION LIST

QSD
CAPT Paul R. Chatelier

Office of the Deputy Under Secretary of Defense

OUSDRE (E&LS)
Pentagon, Room 3D129
Washington, DC 20301

Department of the Navy

Engineering Psychology Program
Office of the Naval Research

Code 1142EP

800 North Quincy Street

Arlington, VA 22217-5000 (3 copies)

Dr. Randall P. Schumaker
NRL A.I. Center

Code 7510ical R&D Command
Naval Research Laboratory
Washington, DC 20375-~5000

Special Assistant for Marine Corps Matters
Code OOMC

Office of Naval Research

800 North Quincy Street

Arlington, VA 22217-5000

Human Factors Department

Code N-71

Naval Training Systems Center
Orlando, FL 32813

Director

Technical Information Division
Code 2627

Naval Research Laboratory
Washington, DC 23075-5000

Dr. Michael Melich
Communications Sciences Division
Code 7500

Naval Research Laboratory
washington, DC 23075-5000

Information Sciences Division
Code 1133

Office of Naval Research

800 North Quincy Street
Arlington, VA 22217-5000

CDR T. Jones

Code 125

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Mr. John Davis

Combat Control Systems Department
Code 35

Naval Underwater Systems Center
Newport, RI 02840

CDR James Offutt

Office of the Secretary of Defense

Strategic Defense Initiative
Organization

Washington, DC 20301-7100

Mr. Norm Beck

Combat Control Systems Department
Code 35

Naval Underwater Systems Center
Newport, RI 02840

Human Factors Engineering
Code 441

Naval Ocean Systems Center
San Diego, CA 92152

AD-A168 775 THE ROLE OF PROGRAN STRUCTURE IN SOFTWARE MAINTENANCE 272
U) GEORGE MASON UNIV FAIRFAX YA DEPT OF PSYCHOLOGY
A BOEHM- DRVIS ET AL. 29 MAY 86 TR-86-GMU-PB1
UNCLASSIFIED N86814 -85-K-8243 F/G 972 NL

— o
T B B L N T TN,

g Yl A A

1.6

= =

._ FEEE

it

E X w_..-..TEH_.
. >

of =1 ; =
= = < £
|

—
SE————
mem——
S ——
—
Ria Py R

|
I
“ml 25

’

A -
LT
L i

¥

-
"y
J.J.

PACNAS
IS

(] 'r r'S y]
R

4
's %4 V2 e s

‘)

P I 4
0 .
s

E
*
a

T *, ﬁ"‘l.’.r.u

PPN
+ ¥
PR A
O 0
e Lt
LCIRN itk

4

.‘, &
"4‘}1{1."&

* P d 1‘A |'._ »
LA

it

- ' . ¥ A
NN ‘,\ o ’
v) PR
» . Woa o) 0 e,
" . v l'! R
l ettty

Operations Research Department
Naval Postgraduate School
Monterey, CA 93940

Dr. L. Chmura

Computer Sciences & Systems
Code 7592

Naval Research Laboratory
Washington, DC 20375-5000

Dr. Stanley Collyer
Office of Naval Technology
Code 222

800 North Quincy Street
Arlington, VA 22217-5000

Mr. Philip Andrews

Naval Sea Systems Command
NAVSEA 61R

Washington, DC 20362

Dr. George Moeller

Human Factors Engineering Branch
Naval Submarine Base

Submarine Medical Research Laboratory
Groton, CT 06340

Mr. Jeff Grossman

Human Factors Division, Code 71
Navy Personnel R & D Center

San Diego, CA 92152-6800

Dean of the Academic Departments
US Naval Academy
Annapolis, MD 21402

Human Factors Branch
Code 3152

o DRepartment of the Navy
-..‘
[Dr. Neil McAlister Dr. A. F. Norcio
2 Office of Chief of Naval Operations Computer Sciences & Systems
P Command and Control Code 7592
- OP-094H Naval Research Laboratory
Washington, DC 20350 Washington, DC 20375-5000
Dr. Gary Poock Dr. A.L. S

Scientific Advisor
Commandant of the Marine Corps
Washington, DC 20380

ODR C. Hutchins

Code 55

Naval Postgraduate School
Monterey, CA 93940

Commander

Naval Air Systems Command
Crew Station Design
NAVAIR 5313

Washington, DC 20361

Aircrew Systems Branch

Systems Engineering Test
Directorate

US Naval Test Center

Patuxent River, MD 20670

Dr. Robert Blanchard

Code 71

Navy Personnel Research and
Development Center

San Diego, CA 92152-6800

LT Dennis McBride

Human Factors Branch
Pacific Missle Test Center
Point Mugu, CA 93042

CDR W. Moroney

Naval Air Development Center
Code 602

Wamminster, PA 18974

Dr. Eugene E. Gloye
ONR Detachment

b Naval Weapons Center 1030 East Green Street
- China Lake, CA 93555 Pasadena, CA 91106-2485
- Dr. Steve Sacks Dr. Robert A. Fleming
-~ Naval Electronics Systems Command Human Factors Support Group
& Code 61R Naval Personnel R & D Center
I8 Washington, DC 20363-5100 1411 South Fern Street
R Arlington, VA 22202
-t -
J_:; ; -94

b - o e e e e e . . . e e et e e . ot ettt et et bt gt T
el .: el . e :_. N '.,- OGN AEAL S L FRL Y .._:_ e e S L ‘.:?-..'._'-.“‘.“'.;' AT T \\ v _..
Ny R Ay N) s "yt h - - - pg - " ’

Department of the Ammy

Dr. Edgar M. Johnson
Technical Director

US Army Research Institute
Alexandria, VA 22333-5600

Director

Organizations & Systems Research Lab
US Army Research Institute

5001 Eisenhower Avenue

Alexandria, VA 22333-5600

e e mte g e itk e e S o S SRk malt B

Technical Director
US Army Human Engineering Lab
Aberdeen Proving Ground, MD 21005

Dr. Milton S, Katz
Director, Basic Research
Arny Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Depactment of the Air Force

Dr. Kenneth R. Boff
AF AMRL/HE
Wright-Patterson AFB, OH 45433

Dr. Earl Alluisi

Chief Scientist

AFHRL/CCN

Brooks Air Force Base, TX 78235

Mr. Charles Bates, Director
Human Engineering Division
USAF AMRL/HES

Wright-Patterson AFB, OH 45433

Dr. Kenneth Gardner

Applied Psychology Unit
Admiralty Marine Tech. Estab.
Teddington, Middlesex TWll OLN
ENGLAND

Other Government Agencies

Dr. M.C. Montemerlo

Information Sciences & Buman Factors
Code RC

NASA HQS

Washington, DC 20546

Defense Technical Information Center
Cameron Station

Bldg. 5

Alexandria, VA 22314 (12 copies)

-95~

Dr. Clinton Kelly

Defense Advanced Research
Projects Agency

1400 Wilson Blvd.

Arlington, VA 22209

) I I

vl NN
.-L'}ﬁﬁbﬁ%\

o,

P LR
l.!.‘.“ RN

AR
Fa e |

Y

s, S WY
242 2 e

.............

Other Organizations

Dr. Jesse Orlansky

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

Dr. Scott Robertson
Catholic University
Department of Psychology
Washington, DC 20064

Dr. Stanley Deutsch
NAS~National Research Council
(COHF)

2101 Constitution Avenue, NW
Washington, DC 20418

Ms. Denise Benel
Essex Corporation

333 N. Fairfax Street
Alexandria, VA 22314

Dr. H. McI, Parsons
Essex Corporation

333 N, Fairfax Street
Alexandria, VA 22314

Dr. Marvin Cohen
Decision Science Consortium, Inc,
Suite 721

7700 Leesburg Pike
Falls Church, VA 22043

Dr, william B. Fouse

School of Industrial & Systems
Engineering

Georgia Institute of Technology

Atlanta, GA 30332

Dr. Bruce Hamill

The Johns Hopkins University
Applied Physics Lab

Laurel, M 20707

Dr. Richard Pew

Bolt Beranek & Newman, Inc,
50 Moulton Street
Cambridge, MA 02238

LR Y SRR
P Ea
- St et
- (Y

..............
........

